Программа перевода энергоносителей

Конвертер тут

Конвертер энергоносителей.

Автоматическая диаграмма перевода энергоносителей в условное топливо.

Программа Windows.

  • Windows 2000
  • Windows XP
  • Windows Vista
  • Windows 7
  • Windows 10

Размер дистрибутива – 4.5 МБ.

Язык интерфейса – русский.

Переводит:

  1. кВт/ч.
  2. гДж.
  3. Гкал.
  4. тонн мазута.
  5. тыс. м. куб. природного газа (Ухтинского месторождения).
  6. тыс. м. куб. природного газа (Тюменского месторождения).
  7. тонн угля (Печерского месторождения, марка Ж).
  8. тонн угля (Кузнецкого месторождения, марка Д).
  9. тонн угля (бурого).
  10. тонн ПБТ (пропан-бутан технический).
  11. т.у.т. (тонн условного топлива).

Скачать программу «Перевод энергоносителей» >>>

Раздел ЭЭ не имеющий энергоэффективности

Раздел ЭЭ не имеющий энергоэффективности

В соответствии с постановлением Правительства РФ №87 «О составе разделов проектной документации и требованиях к их содержанию», проект, подлежащий экспертизе промышленной безопасности, должен содержать раздел 10.1 «Мероприятия по обеспечению соблюдений требований энергетической эффективности и требований оснащенности зданий, строений и сооружений приборами учета используемых энергетических ресурсов». Однако, довольно часто проекты по замене или установке нового оборудования, не имеют энергетической эффективности (ЭЭ).

Тогда, раздел 10.1 ЭЭ можно оформить следующим образом:

Данный проект технического перевооружения не ставит целью повышение энергетической эффективности предприятия или отдельных его участков (узлов), а предусматривает замену морально и физически устаревшего оборудования.

Основное назначение проектируемого технического перевооружения — это повышение надежности и безопасности работы оборудования и предприятия в целом.

Энергетическая эффективность бойлерной установки

Фото бойлерной установки

Бойлерная установка предназначена для осуществления снабжения потребителей и собственных нужд тепловой энергией в виде горячей воды для  отопления и горячего водоснабжения.

Бойлерная установка состоит из подогревателей сетевой воды, сетевых насосов, обеспечивающих циркуляцию воды в теплосети, насосов откачивающих конденсат греющего пара, трубопроводов сетевой воды, греющего пара, конденсата греющего пара, отсоса воздуха и дренажных трубопроводов. Дополнительно, по требованиям конкретного технологического процесса устанавливаются охладитель конденсата и охладитель выпара.

Энергетическая эффективность бойлерной установки достигается посредствам установки нового, современного технологического оборудования.

Установка современных подогревателей сетевой воды типа ПСВ-550-0,3(1,4)-2,5 ЦКТИ-УрФУ, имеющих ряд энергоэффективных решений за счет своей новой конструкции, по сравнению с серийно выпускаемыми бойлерами.

Новая конструкция обеспечивает повышенные тепловой эффективности на 15-20 % по сравнению с ранее выпускаемыми подогревателями сетевой воды.

Установка сетевых и конденсатных насосов с торцевыми уплотнениями, производства ведущей в данном направлении российской компании – ООО НПЦ «АНОД», г. Нижний Новгород.  Эксплуатация модернизированных насосов с торцевыми уплотнениями минимизирует утечку перекачиваемой среды в окружающее пространство и подсос воздуха в агрегаты, тем самым сокращая расход топливных ресурсов на 15-25%.

Оснащение приводов сетевых и конденсатных насосов, системами управления частотой вращения ротора асинхронного электродвигателя (ЧРП). Ввиду переменной загрузки насосных агрегатов бойлерной установки регулирование скорости вращения электродвигателя – наиболее эффективный способ управления производительностью насосов и, следовательно, их энергопотреблением. К преимуществам ЧРП помимо энергосбережения относятся: уменьшение износа основного оборудования за счет плавных пусков, устранение гидравлических ударов, снижение шума.

Работа электродвигателей насосов через систему частотного регулирования позволяется сократить расход электрической энергии на 30-40%.

Для откачки конденсата из охладителя выпара используются два насосных агрегата консольного типа с Р = 3,0 кгс/см2 и Q = 15 – 30 т/час. Насосы включаются от сигнала поплавкового датчика уровня и, поэтому, имеют низко периодический режим работы.

После окончания монтажа, все элементы трубопроводов и арматуры, а также подогреватели сетевой воды, защищаются напыляемой керамической тепловой изоляцией «АСТРАТЕК».

Борьба за энергоэффективность на ТЭЦ

Фото трубопровода сетевой воды

На фото — трубопровод сетевой воды Ду500.

Как повысить энергетическую эффективность на ТЭЦ?

Заделать все свищи в трубопроводах!

Повышения энергоэффективности ТЭЦ

Энергоэффективность по конденсату

Один из показателей энергоэффективности ТЭЦ. Официальный.

«Увеличение потерь конденсата на станции на 1% приводит к перерасходу 2500 тут по станции за год. Потеря 1 тонны конденсата по станции приводит к перерасходу 60 кг условного топлива».

Перевести тут в другие виды энергоносителей >>>

Ранее, в статье «Энергоэффективность насосов КсВ» описывался один из способов уменьшения потерь конденсата на ТЭЦ.

Энергоэффективность подогревателя

Энергоэффективность подогревателя

На тепловых электростанциях вода с помощью энергии сжигаемого топлива в котле нагревается до  состояния водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединенную с  генератором). Механическая энергия вращения преобразуется генератором в электрическую, часть пара  отбирается от турбоагрегата и с помощью подогревателя высокого давления, дополнительно подогревает питательную воду, поступающую в котел, тем самым увеличивая КПД цикла производства. 

Таким образом, основным показателем характеризующим более высокий коэффициент полезного использования топливо-энергетических ресурсов при работе ПВД, является расход энергоресурсов (природного газа) котлом станции.

В связи с наличием многочисленных дефектов в эксплуатируемых с советских времен ПВД, недогрев питательной после подогревателей воды составляет, примерно, 6,8 °С.

Неэффективный нагрев питательной воды происходит также из-за устаревшей конструкции трубной  системы подогревателей. С 1972 г. ТКЗ «Красный котельщик» перешел на изготовление модернизированных ПВД типа ПВ. Более современные подогреватели марки ПВ предусматривают  повышение надежности и экономичности ПВД усовершенствованием их конструкции, в частности изменением  конструкции теплообменника с п-образной системы труб на спиральный змеевик, а также увеличением  диаметра трубок теплообменника с 16 мм  до 32 мм. Данные мероприятия по модернизации конструкции ПВД  позволили снизить скорость питательной воды в теплообменнике от 2,5-3 м/с, имевшим место перед  модернизацией, до значений 1,6-1,8 м/с, что позволило повысить эффективность нагрева воды и снизить расход пара соответственно. Также, в результате снижения скорости воды в трубах теплообменной  поверхности уменьшилось гидравлическое сопротивление подогревателей.

Исходя из выше перечисленного приведем данные, показывающие энергетическую эффективность мероприятия по замене устаревших подогревателей на более современные ПВ-425-230-25-4.

Исходные данные:

— фактическая средняя температура питательной воды за ПВД — 231,5 °С;

— нормативная температура питательной воды за ПВД — 238,3 °С;

— недогрев питательной после ПВД воды — 6 ,8 °С;

— расход питательной воды через ПВД — 367,4 т/ч;

— рабочее давление питательной воды, номинальное — 19,1 МПа;

— температура питательной воды на выходе  — 181,6 °С;

— количество часов в работе ПВД в 2015г. — 7562 ч; .

Расчетные данные:

— количество теплоты (удельная теплоемкость) требуемое на нагрев воды на 1 градус, при температуре воды 181,6 °С и давлении 19,1 МПа — 4276 Дж/кг° С;

— количество теплоты требуемое на нагрев воды количеством 367,4 т/ч на 1 градус за 1 час —  1571002400 Дж/°С;

— количество теплоты требуемое на нагрев воды количеством 367,4 т на 6,8 °С за 1 час  —  10682816320 Дж;

— количество теплоты требуемое на нагрев воды количеством 367,4 т на 6,8°С за 7562 ч. —  80783457МДж;

 — 80783457 МДж = 2756 тут;

Итого, за тридцати летний срок службы подогревателя ПВ-425-230-25-4, при работе агрегата по 7562 часов в год снижение потребления ТЭР позволяет получить:

— экономию тонн условного топлива — более 82680 тут.

Энергоэффективность насосов КсВ

Потери конденсата на ТЭЦ

Конденсатные насосы используются на ТЭС для подачи воды из конденсатора в деаэратор. Производительность конденсатного насоса определяется максимальным расходом конденсата турбины. Для обеспечения надежной работы турбины конденсатные насосы устанавливаются в количестве не менее 2-ух, при этом один из агрегатов находится в работе, второй в горячем резерве.

Основным показателем, характеризующим коэффициент полезного использования топливно-энергетических ресурсов при работе конденсатных насосов, является величина утечки воды через уплотнения конденсатного насоса.

При работе конденсатных насосов увеличиваются зазоры посадочного места подшипникового узла, что способствует быстрому выходу из строя и разрушению вновь установленных подшипников, увеличенному износу сепараторов. Помимо изношенности, применяемые устаревшие конденсатные насосы с сальниковыми уплотнениями характеризуются высокими утечками воды через уплотнения. Установка и эксплуатация модернизированных насосов с торцевыми уплотнениями минимизирует утечку среды в окружающее пространство и подсос воздуха в конденсатор, тем самым сокращая расход топливных ресурсов.

Паспортные данные о максимальных утечках конденсата через концевые уплотнения вала для двух типов уплотнений насосов:

— при работе насоса на сальниковом уплотнении свыше 0,05 м3/ч (50 л/ч), при этом утечка не поддается регулированию поджатием или заменой сальниковой набивки;

— при работе на торцовом уплотнении свыше 5·10-4 м3/ч (0,5 л/ч).

Таким образом, установка насосов с торцовым уплотнением является энергетически эффективным мероприятием, так как увеличение потерь конденсата по ТЭС на 1%  приводит к перерасходу 2500 тут по станции за год. Потеря 1 тонны конденсата по станции приводит к перерасходу 60 кг условного топлива.