Новости

>>> Красный котельщик» участвует в модернизации Пермской ТЭЦ-9


>>> GE осуществит модернизацию крупнейшей электростанции Кыргызстана – Токтогульской ГЭС


>>> Группа ГМС проводит техническое перевооружение литейного комплекса ОАО «Казанькомпрессормаш»


 

Замена кабелей на ТЭЦ

Какие кабели применять на ТЭЦ?

Замена кабелей на ТЭЦ. Причины замены кабелей, кабельных трасс на теплоэлектростанциях.

Одной из причин замены как силовых, так и контрольных кабелей в производственных корпусах ТЭЦ/ТЭС является перенасыщенность технологических коммуникаций на станциях.

Кабельные трассы на ТЭЦ проходят под/над многочисленными коммуникациями, автодороги, здания, трубопроводы, канализации и т.д., что затрудняет производить своевременно ремонтные работы по устранению дефектов. В результате повреждения трубопроводов и попадания воды в кабельный канал происходит коррозия и разрушение металлоконструкций, ухудшение и повреждение изоляции кабельных линий. На кабельных линиях установлены многочисленные соединительные муфты, проложены кабельные вставки, что при высоковольтных испытаниях приводит к постоянным пробоям изоляции.

Требования к новым кабельным линиям:

— марки силовых кабелей выбирать с изоляцией из сшитого полиэтилена, пониженной пожарной опасности, не распространяющие горения при групповой прокладке;

— в кабельных конструкциях предусматривать резервные кабельные полки и лотки;

— прохождения вновь создаваемых кабельных трасс выбирать с учетом удобства строительства, минимального числа пересечений, рационального использования территории ТЭЦ, в соответствии с действующими нормативными документами.

Внешняя связь РЗА

РЗА модем

Схема подключения микропроцессорных терминалов РЗА к внешнему каналу связи.

Между собой терминалы РЗА подключаются по средствам интерфейса RS-485.

К внешним системам группа терминалов подключается с помощью GSM канала.

Данный канал связи используется как резервный, основным является Ethernet по ВОЛС (посмотреть пост – Связь терминалов РЗА).

Основное оборудование системы связи:

— Разветвитель интерфейса RS-422/485.

— GSM-модем.

— Внешняя антенна GSM.

— Шлюз связи IEC104 Server.

— Коммутатор Ethernet.

Схема связи терминалов РЗА по интерфейсу RS-485 >>>

Дымовая труба 300 м

Труба рекорд

Дымовая ЖБ/кирпичная труба Волжской ТЭЦ-2.

Одна из самых высоких труб в России.

Высота – 300 метров.

Входит в тридцатку самых больших труб в мире.

Список самых высоких дымовых труб мира высота которых превышает 200 метров.

https://ru.wikipedia.org/wiki/Список_самых_высоких_труб

Связь терминалов РЗА

Связь реле

Структурная схема подключения МП терминалов РЗА к существующей связи (СТМиС).

Схема из проектной документации по замене устройств релейной защиты на микропроцессорные терминалы. Управление и автоматика РЗА на ОРУ, ВЛ, ГРУ, ГЩУ – ТЭЦ.

Буквенные сокращения на данной схеме связи устройств РЗА:

СТМиС — система телемеханики и связи;

РЗА – релейная защита и автоматика;

РПР – реле-повторители положения разъединителей;

ГРУ – главное распределительное устройство;

ГЩУ – главный щит управления;

МП – микропроцессорный терминал;

АУВ – автоматика управления выключателем; АПВ — автоматика повторного включения;

ДЗ – дистанционная защита;

ДЗШ – дифференциальная защита шин;

МТЗ – максимальная токовая защита;

МТО – междуфазная токовая отсечка;

ТНЗНП – токовая направленная защита нулевой последовательности;

УРОВ – устройство резервирования отказа выключателя;

АПВш/л/сх/1 – трехфазное АПВ с контролем напряжений на шинах. линии и синхронизма. однократное.

Схема связи терминалов РЗА >>>

Замена маслоохладителей турбины

Масло турбины

Причины замены маслоохладителей турбин на ТЭЦ.

В комплект турбоустановки типа ПТ-65/75-130/13 входят маслоохладители типа МП-165-150-1 в количестве 2-х штук. Корпус маслоохладителей выполнен из углеродистой стали. Трубная система выполнена из стальных нержавеющих труб с алюминиевым оребрением, развальцованных и приваренных к трубным доскам. Водяные камеры стальные, сварные и имеют фланцевое соединение с трубными досками трубной системы.

В период эксплуатации турбин, особенно в жаркий период, установленные заводские маслоохладители не справляются с охлаждением масла при режиме работы: 1 в работе, 1 в резерве. Для поддержания температуры масла в требуемом диапазоне 40-45С проводится еженедельная очистка маслоохладителей. Очистка внутренних и наружных поверхностей трубок, трубных досок и водяных камер маслоохладителей проводится с применением высоконапорной установки и требует дополнительных материальных затрат. Особенно затруднена очистка оребрения в связи с конструктивной особенностью исполнения (закрытые камеры и само оребрение трубок).

Неэффективная работа маслоохладителей типа МП в условиях высоких температур окружающего воздуха также требует повышенного расхода технической воды, а также высокая трудоёмкость при проведении очистки масляной части маслоохладителей требует замены маслоохладителей типа МП-165-150-1 на тип МБ.

Для уменьшения затрат по установке предлагается замена существующих маслоохладителей типа МП-165-150-1 на МБ-125-165. Маслоохладитель МБ-125-165 выполнен с габаритными и присоединительными размерами соответствующими размерам серийных маслоохладителей типа МП-165-150-1. Технические характеристики удовлетворяют необходимым требованиям.

Результаты промышленных испытаний головных маслоохладителей типа МБ-125-165 проведенные на других станциях показали, что их тепло-гидравлические характеристики соответствуют требованиям, предъявляемым к маслоохладителям паровых турбин, и существенно превышают показатели серийных маслоохладителей типа МП-165-150-1.

Производство модернизированных турбинных маслоохладителей освоено на предприятии – ООО «Энерготех-Эжектор» г. Екатиринбург.

Система контроля загазованности мазутонасосной

РМТ сигнализатор

Система контроля загазованности мазутонасосной (МН) на ТЭЦ включает в себя:

— Монтаж средств автоматического контроля загазованности по нижнему концентрационному пределу распространения пламени (НКПРП) в здании мазутонасосной (МН-1) с подачей сигнала (светового и звукового) у входа в здание и в помещение операторной при достижении горючих газов  и паров нефтепродуктов 20% объемных от НКПРП;

— Включение аварийной вентиляции в помещении МН-1 при достижении горючих газов и паров нефтепродуктов 50% объемных от НКПРП;

—  Автоматическое отключение насосных агрегатов для перекачки мазута в помещении МН-1 при достижении горючих газов и паров нефтепродуктов 50% объемных от НКПРП.

В помещениях мазутонасосной (МН-1) предусматривается  установка датчиков  довзрывных концентраций (ДДК) производства НПП ООО«ПОЛИТЕХФОРМ-М»  Россия, Свидетельство об утверждении типа средств измерений RU.C.31.001A  №71441 от 05.10.2018г., Сертификат соответствия №TC RU C-RU.ГБ08.В.02401 от 10.04.2017г.

Для регистрации и архивирования всех случаев превышения загазованности, а  также для отображения показаний датчиков загазованности, применяется  регистратор многоканальный технологический РМТ-19, производства компании НПП «Элемер», Россия. Свидетельство об утверждении типа средств измерений RU.C.34.390.А № 67525 от 11.10.2017г.

Количество, место и порядок расположения датчиков газового контроля выбирается согласно техническим характеристикам приборов, а также нормативно-технической документации:

— Требования к установке сигнализаторов и газоанализаторов (ТУ-газ-86) (с Изменением №1).

В мазутонасосной МН-1 датчики контроля загазованности  ДДК размещаются в  насосном отделении в непосредственной близости к насосам ЦМН-1,2,3 и насосу  рециркуляции и в отделении сливных насосов (мазутонасосном приямке) на  отметке -3.00м в непосредственной близости к насосам СН-1,2,3 и ДН-1,2.

РМТ-19 располагается в насосном отделении МН-1, в существующей панели.

Помещение МН-1 оборудовано системой приточно-вытяжной вентиляции, применяемой в качестве аварийной, с управлением от кнопок «Пуск»/«Стоп» в насосном отделении.

При достижении горючих газов и паров нефтепродуктов 20% объемных от НКПРП в насосном отделении МН-1 и в мазутном отделении сливных насосов (мазутонасосном приямке) происходит следующее:

  1. Загорается красная сигнальная лампа BL1.1 — «Насосное отделение» на лицевой стороне панели в насосном отделении.
  2. Включается система оповещения (светозвуковая) в помещении дежурного персонала МН-1.
  3. Включается система оповещения (светозвуковая) о наличии взрывоопасных веществ в помещении МН-1 и у входа в данное помещение.

При достижении горючих газов и паров нефтепродуктов 50% объемных от НКПРП в помещении мазутонасосной №1 происходит следующее:

  1. Загорается красная сигнальная лампа — «Отключение ЦМН-1,2,3, СН-1,2,3, ДН-1,2, насос рециркуляции» на лицевой стороне панели в насосном отделении.
  2. Отключаются насосы в помещении мазутонасосной №1, а именно насосы ЦМН-1,2,3, СН-1,2,3, ДН-1,2 и насос рециркуляции.
  3. Автоматически включается аварийная приточно-вытяжная вентиляция в помещении МН-1.

Схема структурная системы контроля загазованности мазутонасосной (МН).

Система АМАКС

Датчик горения

Описание функций управления системы АМАКС на примере управления горением котла ТГМ-96.

Управление.

Дистанционное управление арматурой блоков газооборудования, шиберами воздуха и запальными устройствами, выполняется как с пульта, так и с операторской станции. Для горелок предусмотрена возможность отключения подачи топлива в горелку по месту кнопкой шкафа АМАКС, также с пульта  управления расположенного в диспетчерской.

Управление шаровыми кранами газа на продувочных «свечах» и на линии запальников выполняется по месту и с пульта управления расположенного в диспетчерской.

Управление ремонтной задвижкой на газопроводе к котлу осуществляется существующей схемой управления.

Управление входной задвижкой на газопроводе к котлу осуществляется существующей схемой управления. В схеме предусмотрена блокировка, запрещающая открытие задвижки, если не закрыт ПЗК любой горелки, и закрытие  задвижки при срабатывании защит, действующих на отключение подачи газа к котлу.

Управление шиберами воздуха горелок выполнено с операторской станции.

Управление задвижкой мазута выполняется по месту и с пульта управления расположенного в диспетчерской.

Управление кранами мазута осуществляется по месту и из диспетчерской.

Автоматическое регулирование.

Регулирование нагрузки котла выполняется с воздействием на регулирующую заслонку горелки, выбранной ведущей. Регулирующие заслонки остальных горелок отслеживают давление после заслонки ведущей горелки. Алгоритм регулятора реализован в шкафу АМАКС.

Регулирование соотношения «газ-воздух» горелок выполняется по сигналам  давления газа и воздуха перед горелкой с воздействием на шибер воздуха данной горелки.

Регулирующая заслонка на газопроводе к котлу заменяется. При этом новая схема управления заслонкой привязывается к существующему регулятору  тепловой нагрузки котла.

Управление регулирующим клапаном мазута осуществляется либо с пульта диспетчерской, либо от существующих цепей регулятора.

Система загазованности метаном

АСУ CH

Контроль содержания концентрации метана в воздухе рабочей зоны котла ТГМ-96.

Контроль загазованности в котельном зале производится переносным газоанализатором марки ПГА-7 из верхней зоны помещения не реже одного раза в смену.

Техническим перевооружением предусматривается оснащение помещения котельного зала стационарной системой контроля загазованности (согласно  требованиям соответствующего раздела проекта). При этом контроль  загазованности переносным газоанализатором осуществляется в прежнем режиме.

Стационарная система контроля обеспечивает также:

— подачу светозвуковой сигнализации и отображение на панели оператора котлов:

  • превышении концентрации метана выше 5% от нижнего концентрационного предела взрывания (далее — НКПВ), Порог-1 метан;
  • превышении концентрации метана выше 20% от нижнего концентрационного предела взрывания (далее — НКПВ), Порог-2 метан.

Световую прерывистую красную индикацию ГАЗ  частотой от 0,5 до 1,0 Гц на сигнализаторе СТГ-3 при достижении концентрации Порог-1 и световую прерывистую красную индикацию ГАЗ частотой от 5,0 до 6,0 Гц на сигнализаторе СТГ-3 при достижении концентрации Порог-2.

Для контроля концентрации метана используется шлейфовый газоанализатор природного газа СТГ-3-Ex производства ФГУП СПО «Аналитприбор» г. Смоленск. Данный прибор закрепить на высоте 0,5м над газовыми блоками БГ горелок котлов.

Сигналы от шлейфовых газоанализаторов поступают на блоки питания и сигнализации БПС-3 установленные в шкафу газоанализатора котлов ШГК.  Электропитание  шкафа должно осуществляться от сети переменного тока 220В (+10%, -15%), 50 Гц (+1 Гц).

В соответствии с п.2.12 ВСН 64-86 «Методические указания по установке сигнализаторов и газоанализаторов контроля довзрывоопасных и предельно допустимых концентраций  химических веществ в воздухе производственных  помещений», металлические площадки рассматриваются как самостоятельные  помещения. Также, учитывая, что котельный зал имеет высоту более 40м, обслуживание датчиков при размещении под потолком будет сильно затруднено. Исходя из вышесказанного, размещение датчиков производить на высоте 0,5-0,7м над газовыми блоками. С учётом общей площади площадок  200м2 и условия  размещения не менее чем 1 датчик на 100м2, количество датчиков заложено с превышением перекрытия площади.

Конфигурацию кабельных трасс уточнить при их монтаже.

Контрольные сети предусматриваются кабелями с медными жилами.

Монтаж электропроводок выполняется в стальных трубах, в лотках и металлорукаве по технологическим и строительным конструкциям, а также электроконструкциям.

Прокладка сетей через перекрытия, стены и перегородки выполняется в  патрубках, зазоры после прокладки заделываются герметизирующей мастикой для кабельных проходов МГКП (ТУ 5772-014-17297211-98).

Производство монтажных и пусконаладочных работ выполняется в соответствии  со СНиП 3.05.06-85 и СНиП 3.05.07.-85.

Для обеспечения мер защиты от поражения электрическим током защитному занулению подлежат все металлические трубы, металлорукава, корпуса электрооборудования, КИП и А и лотки для прокладки кабелей.

Автоматизация газовой горелки АМАКС

АСУ АМАКС

КИП и А газового блока АМАКС горелок котельного агрегата БКЗ-420-140.

Автоматизации системы АМАКС подлежат 28 параметров работы газовой горелки:

  1. Давление газа между ПЗК-1 и ПЗК-2.
  2. Давление газа перед горелкой.
  3. Давление воздуха перед горелкой.
  4. Наличие факела горелки.
  5. Отказ датчика факела.
  6. Наличие пламени запальника горелки.
  7. Наличие факела горелки.
  8. ПЗК-1 открыт.
  9. ПЗК-1 закрыт.
  10. Открыть ПЗК-1.
  11. ПЗК-2 открыт.
  12. ПЗК-2 закрыт.
  13. Открыть ПЗК-2.
  14. Заслонка газа открыта.
  15. Заслонка газа закрыта.
  16. Мощность заслонки ниже минимальной.
  17. Положение исполнительного механизма заслонки газа 0-100%.
  18. Управление заслонкой газа.
  19. Открыть клапан опрессовки.
  20. Клапан безопасности открыт.
  21. Закрыть клапан безопасности.
  22. Клапан запальника закрыт.
  23. Открыть клапан запальника.
  24. Шибер воздуха открыт.
  25. Шибер воздуха закрыт.
  26. Шибер воздуха открыт до положения «вентиляция».
  27. Положение исполнительного механизма шибера воздуха 0-100%
  28. Управление шибером воздуха.

Схема функциональная/автоматизации контроля и управления газовым блоком АМАКС горелок котельного агрегата БКЗ-420-140.

Газовый блок АМАКС. Описание

Аппараты АМАКС

Описание газового блока системы АМАКС.

Блок газооборудования ЗАО «АМАКС-газ» включает в свой состав:

— два предохранительно-запорных клапана (ПЗК), перекрывающих пода­чу — газа при отключении их электропитания;

— опрессовочную гребенку для проверки плотности ПЗК;

— клапан безопасности типа «НО» и клапан подачи газа на запальник типа

«НЗ».

Кроме того, в обязательный комплект поставки входит заслонка дроссель­ная с электроприводом, гребенка КИПиА с отборным устройством и опора. На вводном патрубке блока газооборудования предусмотрена врезка шарового крана для присоединения продувочного трубопровода.

Для розжига и контроля факела запальника использовано запально- сигнализирующее устройство ЗСУ-ПИ-60-05 с сигнализатором горения ЛУЧ-КЭ.

Блоки «АМАКС-газ» предназначены для работы горелок энергетических котлов на природном газе с температурой от минус 30°С до плюс 80°С в автома­тическом режиме и выполняют следующие функции:

— регулирование расхода газа;

— обеспечение безопасного розжига с автоматической опрессовкой своих запорных устройств;

— отсечка газа при нарушении технологических параметров работы котла, недопустимом отклонении давления газа, воздуха перед горелкой или при погаса­нии факела.

Применение блоков газооборудования позволяет исключить возможность загазованности в топке котла и «хлопка» при розжиге горелки и обеспечить возможность погорелочного управления нагрузкой котла.

Для того чтобы установить блоки газооборудования АМАКС необходимо выполнить следующие работы:

  • установить первую задвижку (по ходу движения газа к котлу) Г-11 Ду500 (ручная);
  • переврезать трубопровод ЗЗУ (после отключающих устройств в соответствии с «Правилами безопасности систем газораспределения и газопотребления» ПБ-12-529-03 п.7.32);
  • заменить существующее сужающее устройство для учета газа на диафрагму бескамерную Ду500 Ру0,6. Прямые участки расходомерного устройства выполняются в соответствии с требованиями ГОСТ 8.586.1-2005 — ГОСТ 8.586.5-2005;
  • заменить регулирующей заслонки;
  • установить газовые блоки состоящие из двух ПЗК и регулирующего органа с присоединением к ним газопроводов в соответствии с требованиями НТД;
  • ЗЗУ с контролем растопочного и основного факела;
  • для контроля общего факела в топке должны быть использованы сигнализаторы горения. Для контроля пламени запальника и факела горелки использовать датчики, входящие в комплект запально-сигнализирующего устройства;
  • устройство дополнительных трубопроводов для продувки газопровода в соответствии с требованиями НТД;
  • шибера воздуха перед горелками сохранить существующие. Для управления шиберами предусмотреть поставку новых МЭО-630/63-0,25У-НВТ4-01 с датчиками с унифицированным выходным сигналом 4-20 мА.