Требования к импульсным линиям

Фото импульсных линий диф манометра

Требования к импульсным линиям до измерительных датчиков, на примере узла коммерческого учета теплоносителя, расхода пара.

Прокладку импульсных линий к датчикам давления и датчикам перепада давления выполняется в соответствии с требованиями ГОСТ 8.586.5 2005.

Длина импульсных линий не должна превышать 16 м. Во избежание искажения перепада давления, возникающего из-за разности температуры трубок, две соединительные трубки должны располагаться рядом. Диаметр условного прохода импульсных линий к датчикам давления и датчикам перепада давления должен быть одинаковый на всем их протяжении. Для предотвращения конденсации среды, внутренний диаметр соединительных трубок должен составлять 12 мм. Соединительные трубки устанавливаются с уклоном к горизонтали более чем 1:12. Такой уклон обеспечивает движение конденсата и твердых частиц вниз до отстойных камер.

В соответствии с п. 6.2.1.2  ГОСТ 8.586.5 2005, допускается подключение к одному сужающему устройству двух или более датчиков перепада давления.

В соответствии с п. 6.2.2 ГОСТ 8.586.5 2005, для отделения средств измерений от измерительных трубопроводов применяются разъединительные шаровые краны или игольчатые вентили. Разъединительные краны рекомендуется помещать на соединительных трубках непосредственно у места их соединения с измерительным трубопроводом. Площадь проходного сечения крана должна быть не менее 64% площади сечения соединительной трубки. В рабочем режиме разъединительные краны должны быть полностью открыты.

В соответствии с п. 6.2.4. ГОСТ 8.586.5 2005, для осаждения взвеси или влаги, в нижних точках импульсных линий к датчикам давления и датчикам перепада давления устанавливаются отстойные камеры. Вверху отстойных камер предусмотрено свободное пространство, обеспечивающее доступ к продувочному шаровому крану.

Пример заказной спецификации на импульсные линии:

  1. Труба холоднодеформированная 16х2 мм. Ст. 20, ГОСТ 8734-75.
  2. Вентиль запорный игольчатый DN15 ВТ-5, штуцерно-ниппельное соединение, материал — сталь 20, покрытие Ц6.хр, Рр — 25 Мпа, Тр — 300 °С, Dу — 15 мм.
  3. Комплект монтажных частей — гайка М20х1,5, ниппель, прокладка Ф-4У В 15
  4. Сосуд уравнительный СУ-6,3-2-А, условное давление 25 МПа, исполнение 2, сталь 20 по ГОСТ 1050-88

Технические условия на узел учета теплоносителя

Фото диафрагмы пара

Пример технических условий на организацию коммерческого узла учета, расход пара Ду400 тепловой энергии, с теплоносителя.

Технические условия (далее – ТУ) составлены в соответствие требованиям Правил коммерческого учёта тепловой энергии, теплоносителя, утвержденным Постановлением правительства РФ от 18.11.2013г. № 1034 (далее – Правила учета).

Срок действия ТУ — 1 год. После истечения срока действия необходимо переоформить ТУ, в противном случае ТУ считаются аннулированными.

— Наименование объекта:

— Местонахождение объекта:

— Граница балансовой принадлежности сетей:

— Расчетные параметры теплоносителя в точке поставки:

— расход теплоносителя макс/мин:

— давление в подающем трубопроводе:

— температура теплоносителя в подающем трубопроводе:

Удаленный съём данных с узла учета пара:

Тепловычислитель СПТ961.2 узла учета должен иметь возможность подключения к Автоматизированной информационно — измерительной системе коммерческого учета тепла (далее — АИИСКУТ) ТЭЦ с использованием стандартных открытых промышленных протоколов и интерфейсов. Вариант подключения узла учета к АИИСУТ должен соответствовать набору типовых проектных решений (далее — ТПР) в составе проекта АИИСУТ ТЭЦ. Выбор ТПР согласуется со службой эксплуатации ТЭЦ на стадии согласования проекта узла учета.

Рекомендации по размещению и выбору средств измерений (далее — СИ) узла учета:

  1. Узел учета и СИ в его составе должны соответствовать требованиям Правил учета.
  2. Узел учёта должен располагаться после границы балансовой принадлежности сетей, быть максимально к ней приближен (с учётом требований к прямолинейным участкам трубопроводов до и после расходомеров) и обеспечивать учёт всей подключенной тепловой нагрузки. Рекомендуется длины прямолинейных участков до и после расходомеров увеличить не менее чем в 1,5 раза от минимально возможных по требованиям технической документации от производителя СИ.
  3. Потери давления в зоне установки расходомеров по каждому трубопроводу не должны превышать 0,5 м вод. ст.
  4. Условия окружающей среды в месте размещения СИ должны соответствовать эксплуатационным требованиям, согласно технических требований руководств (инструкций) по эксплуатации.
  5. Монтаж электронных блоков СИ, блоков питания, автоматов подачи напряжения питания и т.п. выполнить в отдельном металлическом шкафу, исключающем несанкционированный доступ к указанному оборудованию (степень защиты не ниже IP56).
  6. Диапазоны измерений, применяемых СИ должны соответствовать договорным ограничениям и возможным значениям измеряемых (расчетных) параметров теплоносителя.
  7. Все СИ должны иметь методику поверки, утвержденную в установленном порядке, межповерочный интервал не менее 4-х лет и действующее на момент ввода в эксплуатацию свидетельство об утверждении типа СИ (должны быть внесены в Госреестр СИ РФ).
  8. Все СИ должны иметь отдельные места пломбирования, для защиты от несанкционированного доступа.
  9. Рекомендуется применять тепловычислитель СПТ961.2 производства АО НПФ «ЛОГИКА», укомплектованные соответствующими первичными преобразователями производства НПП «ЭЛЕМЕР» и соответствующие настоящим ТУ.
  10. По принципу действия с точки зрения надежности, простоты и удобства обслуживании рекомендуется в узлах коммерческого учета применять расходомерные диафрагмы в комплекте с датчиками переменного перепада давления, и токовым выходом, имеющие сертификат соответствия Госстандарта РФ.
  11. Рекомендуется применять парные комплекты преобразователей температуры теплоносителя.

Контрольные кабели и кабели питания не должны иметь промежуточных соединений на всей длине следования.

Требования к узлам учета пара

Фото теплосчетчика СПТ

Требования к узлам учета пара на теплоэлектростанциях (ТЭЦ).

Измерение расхода пара на узлах учета ТЭЦ, как правило,  должно вестись методом переменного перепада давления. В качестве сужающих устройств должны применяться диафрагмы с угловым способом отбора в соответствии с п. 5.2.3 ГОСТ 8.586.2-2005.

Измерительный трубопровод должен иметь круглое сечение по всей длине прямолинейных участков. Выполнение данного требования контролируют визуально, за исключением участков в непосредственной близости от сужающих устройств (длиной 2D), где такая оценка может быть дана только по результатам измерений геометрических характеристик сечения трубопровода, выполненных в соответствии с требованиями, зависящими от типа сужающих устройств (требование п. 7.1.1 ГОСТ 8.586.1-2005)

По мере завршения строительства узла учета, требуется разработка методики измерений во исполнение требований п. 5 Федерального закона от 26.06.2008 №102-ФЗ «Об обеспечении единства измерений».

Участок измерительного трубопровода после сужающего устройства в соответствии с требованиями п.7 ГОСТ8.586.1-2005 должен составлять 6Ду (при диаметре трубопровода 400 Ду — 2,556 м соответственно).

Для измерения температуры пара, на участке измерительного трубопровода на узле учета пара устанавливается  датчик температуры, после СУ на расстоянии 5 Ду (не менее 2130 мм).

Конструктивно схема измерения расхода пара состоит: датчики, далее приборы отображения, регистрации, архивирования текущих значений и интервальных величин, а также вычисленный расход пара  — далее ПЭВМ (АРМ оператора диспетчерских систем).

Климатические характеристики района, где должны располагаться узлы учета, принимаются по СП 131.13330.2018.

Параметры микроклимата воздуха рабочей зоны внутри производственных помещений (для расположения автоматики узлов учета) принимаются по СанПиН 2.2.4.548-96 и ГОСТ 12.1.005-88 для соответствующей категории помещения.

Требования к датчикам и вычислителям узлов учета пара:

Датчики температуры установливаются на прямолинейном участке паропроводов после сужающих устройств в соответствие с требованиями п. 6.3 ГОСТ 8.586.5-2005.

В качестве датчиков температуры применяются термометры сопротивления платиновые класса допуска А ТСП-0193 ТУ 311-00226253.037-2008. Датчики температуры подключаются к тепловычислителю СПТ 961.2. Термометры сопротивления устанавливаются в соответствии с п. 6.3 ГОСТ 8.586.5-2005.

Датчики давления по условиям их эксплуатации размещаются в обогреваемом помещении на стенде. Датчики давления подключаются к тепловычислителю СПТ 961.2.

В качестве датчиков давления используются датчики Элемер-АИР-30М производства НПП «Элемер».

В качестве датчиков перепада давления используются датчики Элемер-АИР-30М производства НПП «Элемер».

Прокладку импульсных линий к датчикам давления и датчикам перепада давления необходимо выполнить в соответствии с требованиями ГОСТ 8.586.5 2005.

Тепловычислитель СПТ 961.2 предназначен для измерения электрических сигналов силы постоянного тока, сопротивления, соответствующих давлению, температуре, с последующим вычислением объема, массы, объемного или массового расхода, пара.

Важно!: При установке теплосчетчика на коммерческий узел учета, на него должен быть представлен паспорт-формуляр завода изготовителя с первичной поверкой.

Пример паспорта трубопровода

Паспорт трубы пара

Пример паспорта трубопровода пара 4 МПа, в составе:

— Общие данные.

— Свидетельство о монтаже трубопровода.

— Схема трубопровода.

— Свидетельство об изготовлении элементов трубопровода.

— Сводная таблица сварных стыков.

Скачать пример паспорта трубопровода в формате jpg (Яндекс.Диск) >>>

 

Эжектор пароструйный

Шильдик эжектора типа ЭП-3-750

Пароструйный эжектор типа ЭП-3-750, сделанный в СССР на Ленинградском металлическом заводе.

Принцип действия пароструйного эжектора.

В пароструйном эжекторе высокоскоростной поток пара (рабочее тело) проходит через сопло и создает вакуум, всасывая в себя медленно движущийся второй поток (всасываемое тело) — это может быть газ, пар или жидкость. Затем эти два потока смешиваются и выходят из эжектора с более высоким давлением.

Эжекторы паровых турбин широко применяются в энергетической промышленности для преобразования энергии пара в механическую энергию, которая затем может быть использована для привода генераторов электроэнергии или других механизмов. Они обычно используются в больших электростанциях, где требуется высокая производительность и эффективность.

Скачать паспорт пароструйного эжектора типа ЭП-3-750 в формате pdf >>>

Охладитель пара уплотнений

Фото ПСВ-125-7-15

Охладитель пара концевых уплотнений турбины — это устройство, которое используется для снижения температуры пара после его прохождения через уплотнения. Это важно, поскольку избыточная температура может привести к повреждению или износу уплотнений, что может привести к утечкам или другим проблемам.

Охладитель пара уплотнений обычно состоит из теплообменника, через который проходит пар, и среды, которая используется для охлаждения пара. Пар проходит через теплообменник, где его тепло передается среде охлаждения. Это позволяет снизить температуру пара и предотвратить его перегревание, что может привести к повреждению уплотнения.

Охладители пара уплотнений широко применяются в различных отраслях промышленности, таких как нефтехимическая, энергетика, химическая промышленность и другие, где требуется надежное и эффективное уплотнение для предотвращения утечек и повреждений оборудования.

На ТЭЦ в качестве охладителей пара уплотнений турбинного агрегата используются подогреватели типа ПСВ (на фото сверху охладитель пара уплотнений турбины ПТ-65/75-130/13 – ПСВ-125-7-15).

Концевые уплотнения паровой турбины служат для уменьшения потерь пара и энергии через зазоры между поворотными и неподвижными частями турбины. Уплотнения полностью или частично блокируют эти зазоры, предотвращая утечку пара.

Они могут быть изготовлены из различных материалов, таких как металл или специализированные полимеры, и могут быть сконструированы по-разному в зависимости от специфического вида турбины и рабочих условий. Однако все они выполняют важную функцию, удерживая рабочее вещество внутри турбины и защищая ее детали от износа и повреждения.

Высокая эффективность этих уплотнений критически важна для эффективной работы турбины и обеспечения безопасности ее эксплуатации.

Реконструкция паропроводов

Эстакада паропроводов

Некоторые рекомендации по реконструкции паропроводов.

Источниками пара на ТЭЦ являются паровые турбины, а также редукционно-охладительные установки, подключенные к паропроводам. Отпуск пара осуществляется с 4-х обще-станционных коллекторов Ду-500 мм — нитки «А», «Б», «В» и «Г». В связи с износом трубопроводов, эстакад трубопроводов, тепловой изоляции труб, необходима реконструкция паропроводов.

Выполняемые объемы работ по реконструкция паропроводов:

— разработка проектно-сметной документации (проектная и рабочая);

— экспертиза промышленной безопасности проектной документации;

— строительно-монтажные и пуско-наладочные работы.

— сдача трубопроводов в эксплуатацию.

Основные технические решения и требования для проектирования реконструкция паропроводов:

— границы проектирования и точки подключения к технологическим линиям;

— необходимые обследования строительных конструкций существующих эстакад, используемых при размещении паропроводов;

— замена участков существующего паропровода;

— замена арматуры;

— замена существующего коммерческого узла учета пара;

— приведение помещения теплового пункта к требованиям СНиП 41-02-2003 «Тепловые сети», п.47 Постановления Правительства РФ от 18 ноября 2013 г. N 1034 «О коммерческом учете тепловой энергии, теплоносителя», Свод правил по проектированию и строительству СП 41-101-95 «Проектирование тепловых пунктов»;

— замена тепловой изоляции существующего паропровода.

Проектом определить допустимые тепловые потери исходя из действующей нормативно-технической документации.

Проектом предусмотреть теплоизоляцию паропроводов необходимой толщины из негорючих материалов (каменной или базальтовой ваты). Покрывной слой – оцинкованный лист толщиной не менее 0,7 мм.

Выполнить расчеты трубопроводов на устойчивость (продольный изгиб) и прочность, расчет гидравлических режимов работы паропроводов. Диаметр, толщину стенок паропроводов, тип и количество опорно-подвесных систем должны быть рассчитаны проектной организацией согласно нагрузкам потребителей, планируемой общей протяжённости паропроводов и т.п.