Питание собственных нужд ТЭЦ

Система СН ТЭЦ

Питание собственных нужд ТЭЦ. Схема питания собственных нужд (см. однолинейную схему ТЭЦ) ТЭЦ.

Для обеспечения собственных нужд ТЭЦ установлены:

— трансформаторы связи (ТС-1, ТС-2) типа ТДТНГ-40500/110-57 мощностью по 40,5 МВ•А напряжением 112/38,5/6,3кВ;

— резервный трансформатор собственных нужд РТСН типа ТРДН-25000/110-66 мощностью 25 МВА напряжением 115/6,3-6,3 кВ.

Схема ГРУ-6 кВ представляет собой две системы сборных шин – рабочую и

трансферную. Рабочая система шин имеет 4 секции, соединенные между собой

секционными выключателями и реакторами типа РБ-6-2000-10.

РУСН -6 кВ представляет собой одиночную систему шин, разделенную на 10 секций. Секции соединены с ГРУ реактивированными кабельными линиями (ЛСН-1 — ЛСН-8), при этом III, IV и V, VI секции 6 кВ РУСН -6 кВ имеют общее питание по ЛСН-3 и ЛСН-4 соответственно.

Нормальный режим работы ТЭЦ:

— 1 и 2 секции 6,3 кВ ГРУ-6 кВ питание производится от ТС-1.

— 3 и 4 секции 6,3 кВ ГРУ-6 кВ питание производится от ТС-2.

Для обеспечения данного режима СВ 1-2 и СВ 3-4 ГРУ-6 кВ включены, а ТОР РВ 1-2 и РВ 3-4 выведены из работы. Для обеспечения бесперебойного снабжения

потребителей при отключении ТС-1(2) и при этом для ограничения токов КЗ 2 и 3

секции ГРУ-6 кВ объединены через ТОР РВ-2-3, СВ 2-3 отключен.

При выводе одного ТС все 4 секции объединяются.

Паспорт трансформатора ТДТГН

Скачать ТДТГН паспорт

Паспорт трансформатора ТДТГН-40500/110-57.

Трехфазный трехобмоточный трансформатор, масляный с дутьевым охлаждением, для наружной установки.

Производитель – Московский трансформаторный завод имени В. В. Куйбышева.

Масса полная трансформатора – 130 500 кг.

Трансформатор участвует в схеме питания собственных нужд ТЭЦ.

Скачать паспорт трансформатора ТДТГН в формате pdf >>>

Паспорт трансформатора ТРДН

ТРДН 110 кВ

Паспорт трансформатора ТРДН-25000/110-66.

Трехфазный трехобмоточный трансформатор, масляный с дутьевым охлаждением, для наружной установки.

Производитель – Московский трансформаторный завод имени В. В. Куйбышева.

Масса полная трансформатора – 66 570 кг.

Трансформатор участвует в схеме питания собственных нужд ТЭЦ.

Скачать паспорт трансформатора ТРДН в формате pdf >>>

Кабельные эстакады ТЭЦ

Конструкция эстакад для ТЭЦ

Сооружениями для прокладки кабелей на ТЭЦ в кабельных коробах являются эстакады.

Уровень ответственности сооружений — нормальный. Класс сооружений согласно ГОСТ 27751-2014 — КС2. Коэффициент надежности по ответственности Уп =1,0.

Основными конструкциями эстакад являются опоры, а также стальные балки и фермы для размещения кабельных коробов и проходных мостиков (для обслуживания технологического оборудования).

Опоры — это стальные одноветвевые, двухветвевые и четырехветвевые стойки на ж.б. молитных фундаментах, а также одноветвевые стойки, устанавливаемые в сверленые котлованы с последующим обетонированием пазух.

Крепление стоек к фундаментам предусмотрено жесткое (одноветьевые и двухветьевые в плоскости перпендикулярной оси эстакады) и шарнирное (четырех-ветьевые и двухветьевые в плоскости параллельной оси эстакады). Крепление должно выполняться с использованием стальных фундаментных болтов.

За относительную отметку 0,000 принят уровень верхнего обреза фундаментов. При этом расстояние от верхнего обреза фундаментов до уровня земли должно составлять не менее 200 мм.

Ж.б. монолитные фундаменты — мелкого заложения, отдельностоящие. Фундаменты должны изготавливаться в открытых котлованах. Глубина заложения подошвы фундаментов 1,6 м и 2,2 м. Перед выполнением подготовки дно котлована должно быть очищено от разуплотненного грунта.

Опорным слоем основания фундаментов служат пески (ИГЭ-2).

Фундаменты должны выполняться из тяжелого бетона В15, W4, F150 (ГОСТ 26633-2012) по подготовке из бетона В7,5 (ГОСТ 26633-2012) толщиной 100 мм. Бетоны должны готовиться на сульфатостойких портландцементах по ГОСТ 22266-2014. Рабочая арматура класса А500С (А500) по ГОСТ Р 52544-2006, конструктивная — класса A-I (А240) по ГОСТ 5781-82. Защитный слой для рабочей арматуры принят: для плитных частей — 40 мм; для подколонников — 30 мм.

Крепление стоек к фундаментам должно выполняться через фундаментные болты типа 1 исполнения 1 по ГОСТ 24379.1-2012 номинальным диаметром 24 и 30 мм. Материал шпилек фундаментных болтов — сталь марки СтЗсп4 по ГОСТ 535-2005.

Стойки опор относятся к группе 2 стальных конструкций по СП 16.13330.2011.

Одноветвевые стойки опор высотой 0,5; 1,5; 2,5; 3.0 и 5.0 м без консолей и с консолями, подкрепленными подкосами, для размещения балок проходных мостиков — линейные конструкции сплошного сечения. Стержень стоек — из труб электросварных прямошовных по ГОСТ 10704-91 из стали ВСтЗпс6 (ГОСТ 10705-80). Консоли — сварные двутавровые балки из горячекатаных листов по ГОСТ 19903-74. Подкосы — составного таврового сечения из равнополочных горячекатаных уголков по ГОСТ 8509-93. Опорные плиты из горячекатаных листов. Соединение труб и опорных плит без стоек усилено ребрами жесткости из горячекатаных листов. Полки и стенки консольных балок, уголки подкосов, а также опорные плиты и ребра жесткости должны быть изготовлены из стали С245 (ГОСТ 27772-80).

Двухветьевые стойки опор высотой 3,0; 5,0; 8,0 и 9,5 м — плоские (решетчатые) конструкции сквозного сечения из двух ветвей, соединенных раскосами и распорками. Ветви из труб электросварных прямошовных из стали ВСтЗпс6. Раскосы и распорки — составного таврового сечения из равнополочных уголков. Балки для опирания балок проходных мостиков — сварные двутавровые балки из горячекатаных листов по ГОСТ 19903-74. Опорные плиты из горячекатаных листов. Соединение труб и опорных плит баз стоек усилено ребрами жесткости из горячекатаных листов. Полки и стенки балок, уголки раскосов и распорок, а также опорные плиты и ребра жесткости должны быть изготовлены из стали С245.

Четырехветьевые стойки опор высотой 5,0; 6,5 и 9,5 м — пространственные (решетчатые) конструкции сквозного сечения из четырех ветвей, соединенных раскосами и распорками. Для обеспечения пространственной жесткости в поперечных сечениях предусмотрены диафрагмы из раскосов. Ветви из труб электросварных прямошовных из стали ВСтЗпс6. Раскосы и распорки — составного таврового сечения из равнополочных уголков. Балки для опирания балок проходных мостиков — сварные двутавровые балки из горячекатаных листов по ГОСТ 19903-74. Опорные плиты из горячекатаных листов. Соединение труб и опорных плит баз стоек усилено ребрами жесткости из горячекатаных листов. Полки и стенки балок, уголки раскосов и распорок, а также опорные плиты и ребра жесткости должны быть изготовлены из стали С245.

Размещение кабельных коробов и проходных мостиков на переходах длиной до 6,0 м предусмотрено на стальных балках. Балки для крепления кабельных коробов и проходных мостиков относятся к группе 2 стальных конструкций по СП 16.13330.2011.

Балки для крепления кабельных коробов составного сечения шириной 400 мм пролетом до 6,0 м из горячекатаных швеллеров с параллельными гранями полок по ГОСТ 8240-97, соединенных распорками из гнутого замкнутого сварного прямоугольного профиля по ГОСТ 30245-2003. Все элементы балок из стали С245.

Балки пешеходных мостиков составного сечения шириной 1000 мм пролетом до 6,0 м из горячекатаных швеллеров с параллельными гранями полок по ГОСТ 8240-97, соединенных распорками из гнутого замкнутого сварного прямоугольного профиля по ГОСТ 30245-2003. Фасонный прокат балок из стали С245. Настил балок из просечно-вытяжных листов по ТУ 5262-001-23083253-96 из стали СтЗсп по ГОСТ 380-2005.

Для обеспечения больших -18м — переходов предусмотрены пространственные стальные фермы. Фермы относятся к группе 2 стальных конструкций по СП 16.13330.2011.

Сварные заводские швы по ГОСТ 14771-76. Заводские соединения должны выполняться механизированной (полуавтоматической) дуговой сваркой плавящимся электродом — сварочной проволокой марки Св-08Г2С в защитном углекислом газе или в его смеси с аргоном (ГОСТ 10157-79).

Монтажные сварные соединения по ГОСТ 5264-80 должны выполняться покрытыми электродами типа Э46А (ГОСТ 9467-75).

Стальные конструкции должны быть покрыты не менее чем двумя слоями эмали Г1Ф-115 (ГОСТ 6465-76) серого цвета по грунтовке ГФ-021 (ГОСТ 25129-82) красно-коричневого цвета. Толщина покрытия не менее 80 мкм. Степень очистки поверхности элементов конструкций от прокатной окалины и ржавчины под покрытия по ГОСТ 9.402-2004-2.

Заземление опорной металлоконструкции кабельной эстакады – выполнено стальной полосой 40×5 мм, соединенной с вертикальным заземлителем диаметром 18 мм при помощи сварки.

Защита эстакады от прямых ударов молнии выполняется существующими на ТЭЦ молниеотводами, попадая в зону действия существующей системы молниезащиты.

Замена кабелей на ТЭЦ

Какие кабели применять на ТЭЦ?

Замена кабелей на ТЭЦ. Причины замены кабелей, кабельных трасс на теплоэлектростанциях.

Одной из причин замены как силовых, так и контрольных кабелей в производственных корпусах ТЭЦ/ТЭС является перенасыщенность технологических коммуникаций на станциях.

Кабельные трассы на ТЭЦ проходят под/над многочисленными коммуникациями, автодороги, здания, трубопроводы, канализации и т.д., что затрудняет производить своевременно ремонтные работы по устранению дефектов. В результате повреждения трубопроводов и попадания воды в кабельный канал происходит коррозия и разрушение металлоконструкций, ухудшение и повреждение изоляции кабельных линий. На кабельных линиях установлены многочисленные соединительные муфты, проложены кабельные вставки, что при высоковольтных испытаниях приводит к постоянным пробоям изоляции.

Требования к новым кабельным линиям:

— марки силовых кабелей выбирать с изоляцией из сшитого полиэтилена, пониженной пожарной опасности, не распространяющие горения при групповой прокладке;

— в кабельных конструкциях предусматривать резервные кабельные полки и лотки;

— прохождения вновь создаваемых кабельных трасс выбирать с учетом удобства строительства, минимального числа пересечений, рационального использования территории ТЭЦ, в соответствии с действующими нормативными документами.

Внешняя связь РЗА

РЗА модем

Схема подключения микропроцессорных терминалов РЗА к внешнему каналу связи.

Между собой терминалы РЗА подключаются по средствам интерфейса RS-485.

К внешним системам группа терминалов подключается с помощью GSM канала.

Данный канал связи используется как резервный, основным является Ethernet по ВОЛС (посмотреть пост – Связь терминалов РЗА).

Основное оборудование системы связи:

— Разветвитель интерфейса RS-422/485.

— GSM-модем.

— Внешняя антенна GSM.

— Шлюз связи IEC104 Server.

— Коммутатор Ethernet.

Схема связи терминалов РЗА по интерфейсу RS-485 >>>

Связь терминалов РЗА

Связь реле

Структурная схема подключения МП терминалов РЗА к существующей связи (СТМиС).

Схема из проектной документации по замене устройств релейной защиты на микропроцессорные терминалы. Управление и автоматика РЗА на ОРУ, ВЛ, ГРУ, ГЩУ – ТЭЦ.

Буквенные сокращения на данной схеме связи устройств РЗА:

СТМиС — система телемеханики и связи;

РЗА – релейная защита и автоматика;

РПР – реле-повторители положения разъединителей;

ГРУ – главное распределительное устройство;

ГЩУ – главный щит управления;

МП – микропроцессорный терминал;

АУВ – автоматика управления выключателем; АПВ — автоматика повторного включения;

ДЗ – дистанционная защита;

ДЗШ – дифференциальная защита шин;

МТЗ – максимальная токовая защита;

МТО – междуфазная токовая отсечка;

ТНЗНП – токовая направленная защита нулевой последовательности;

УРОВ – устройство резервирования отказа выключателя;

АПВш/л/сх/1 – трехфазное АПВ с контролем напряжений на шинах. линии и синхронизма. однократное.

Схема связи терминалов РЗА >>>