Схема ТЭЦ с паровой турбиной

Тепловая схема с турбиной

Схема действующей ТЭЦ с паровыми котлами и турбинами.

На тепловой (основной) схеме ТЭЦ представлено следующее основное оборудование:

— котельные агрегаты ТГМ-96;

— паровые турбины ПТ-60, ПТ-65, Р-50;

РОУ, БРОУ;

— ПНД, ПВД;

деаэраторы 6 и 1,2 ата;

— ПЭНы;

— подогреватели сетевой воды (бойлерные установки);

На тепловой (основной) схеме ТЭЦ представлены следующие среды/системы:

  1. Пар.
  2. Конденсат греющего пара.
  3. Основной конденсат.
  4. ХОВ.
  5. Питательная вода.
  6. Дренажи.
  7. Питательная вода.

Скачать схему ТЭЦ с паровой турбиной в формате jpg >>>

Типы паровых турбин ТЭЦ

Фото турбины

Теплоэлектроцентрали (ТЭЦ) являются ключевыми узлами в инфраструктуре современной энергетики. Они обеспечивают потребителей не только электричеством, но и теплом. Центральным элементом любой ТЭЦ является паровая турбина, преобразующая тепловую энергию пара в механическую работу, которая затем превращается в электричество. Рассмотрим основные типы паровых турбин, используемых на ТЭЦ.

Импульсные паровые турбины

Импульсная турбина работает по принципу расширения и ускорения пара через сопла. В этой конструкции скорость потока пара значительно возрастает при прохождении через сопла, а давление остается почти неизменным. Энергия высокоскоростного потока передается лопаткам рабочего колеса, что заставляет его вращаться.

Реактивные паровые турбины

В реактивных турбинах расширение и понижение давления происходят как в стационарных лопатках – направляющих аппаратах (соплах), так и в подвижных – рабочих лопатках колеса. Это позволяет более полно использовать энергию пара за счет двойного превращения её из потенциальной формы в кинетическую.

Конденсационные паровые турбины

Конденсационные турбины представляют собой тип реактивных или импульсно-реактивных машин, где после работы на лопатках рабочего колеса отработанный пар направляется в конденсатор для охлаждения и конденсации обратно в жидкое состояние. Использование конденсатора позволяет значительно повышать КПД всей системы за счет создания большого перепада давления между выходом из последней ступени и конденсатором.

Противодавленные паровые турбины

Противодавленные турбины используются на объектах, где помимо электричества требуется также большое количество технологического или отопительного пара высокого давления. В таких установках отработанный из первых ступеней рабочего колеса пар направляется не в конденсатор, а непосредственно к потребителям.

Выпускноперепусковые (байпасные) паровые турбины

Этот тип предусматривает возможность частичной или полной перекачки отработанного на определённом этапе экспанзии пар через байпасный контур обратно на начало процесса или же для использования его на других этапах производства.

Выбор определённого типа зависит от спектра задач, которые должна выполнять данная ТЭЦ: нуждаются ли они только в выработке электричества или же им требуются различные параметры отходящего из системы пар для целей коммунального хозяйства или промышленности.

С каждым годом инженерия стремится к повышению КПД и экологичности данных установок: разрабатывается новое оборудование с уменьшением выбросов CO2, повышением автоматизации процессов контроля и эксплуатации машин.

Таким образом, правильный выбор типажей и модификаций паротурбинной установки играет ключевую роль, как для экономический эффективности работы самой станции так и для окружающей её экосистемы.

Текст – YandexGPT 3 Pro

Принцип действия паровой турбины

Картинка лопастей паровой турбины

Принцип действия паровой турбины теплоэлектростанции:

Перегретый пар от котельного агрегата, поступающий в турбину, раскручивает её лопасти за счёт своей кинетической энергии и разности давлений на входе и выходе турбины. Процесс можно описать следующим образом:

  1. Пар под высоким давлением и температурой поступает во входные камеры турбины.
  2. В этих камерах пар теряет часть своего давления и температуры, прежде чем попасть на лопасти турбины.
  3. Затем пар попадает на изогнутые лопасти, расположенные на роторе турбины.
  4. Лопасти имеют специальную форму, которая позволяет им преобразовывать кинетическую энергию пара в механическую энергию вращения ротора турбины.
  5. Как только пар попадает на лопасть, он начинает расширяться и терять свою кинетическую энергию. В результате этого процесса пар охлаждается и конденсируется на поверхности лопасти.
  6. Конденсированный пар затем стекает вниз по лопасти в направлении вращения турбины, создавая тем самым разницу давлений между входом и выходом турбины.
  7. Эта разница давлений приводит к непрерывному потоку пара через турбину, обеспечивая её непрерывное вращение.

Процесс получения кинетической энергии из пара:

Пар получает большую энергию при нагревании в котлах теплоэлектростанции, потому что тепловая энергия используется для изменения агрегатного состояния воды и преобразования ее в пар. Этот процесс называется парообразованием, и он происходит при определенной температуре и давлении.

Когда вода нагревается в котле, она сначала переходит из жидкого состояния в газообразное (пар), а затем этот пар расширяется (происходит освобождение большого объема кинетической энергии) и производит механическую работу, вращая турбину.

Изображение – Midjourney 5.2
Текст – YandexGPT 2

Безопасность при эксплуатации паровых турбин

Фото взрыв турбины

Безопасность при эксплуатации паровых турбин ТЭЦ.

Эксплуатация турбины и вспомогательного оборудования должна производится в полном соответствии с данной инструкцией, правилами технической эксплуатации электрических станций и сетей, правилами техники безопасности при эксплуатации теплотехнического оборудования электростанций и тепловых сетей, правилами устройства и безопасной эксплуатации сосудов, работающих под давлением, правилами устройства и безопасной эксплуатации трубопроводов пара и горячей воды.

К обслуживанию турбины и вспомогательного оборудования допускаются лица, достигшие 18 лет, прошедшие обучение и проверку знаний по Правилам Госгортехнадзора, должностным и производственным инструкциям и имеющие соответствующую отметку в удостоверении.

Шум турбины и вспомогательного оборудования не должен превышать требований ГОСТ 12.1.003-83.

На рабочих местах уровень вибрации не должен превышать гигиенические нормы вибрации согласно ГОСТ 12.1.012-78.

Все горячие части турбины и трубопроводов должны быть покрыты тепловой изоляцией. Температура наружной  поверхности изоляции не должна превышать 45°С при температуре наружного воздуха 25°С. Кроме того, ЦВД и ЦНД закрываются специальной обшивкой из тонкой листовой стали.

Защитные маслокороба должны быть плотными. Плотность коробов проверять при капремонтах турбины и после каждого ремонта короба с применением сварки.

Фланцевые  соединения маслопроводов вне защитных коробов должны быть заключены в кожуха.

Все пусковые устройства и арматура должны быть пронумерованы и иметь надписи в соответствии с оперативной схемой. На штурвалах задвижек и вентилей должны быть указано направление вращения.

Зона обслуживания турбины должна быть укомплектована:

— огнетушители типа ОВП-80  — 2 шт.

— огнетушители типа ОПУ-5     — 2 шт.

— огнетушители типа ОУ-80      — 1 шт.

— ящик с песком (V= 0,5м3)     — 1 шт.

Должен быть обеспечен постоянный надзор за сохранностью и исправностью средств пожаротушения, за наличием давления в пожарной магистрали. При приемке-сдаче смены делать соответствующие отметки в оперативном журнале или ведомости.

Данное изображение создано с помощью ИИ – Midjourney 5.2

Эксплуатация и ремонт турбоустановки

Фото ремонта турбины

Эксплуатация и ремонт турбоустановки ТЭЦ.

При эксплуатации турбоустановки должны быть обеспечены:

-надёжность работы основного и вспомогательного оборудования;

-готовность принятия номинальных электрической и тепловой нагрузок;

-нормативные показатели экономичности основного и вспомогатель­ного оборудования.

Дежурный персонал обязан контролировать работу вспомогательного оборудования по показаниям КИП, визуальным осмотром и прослушиванием во время обходов.

Обращать особое внимание на показания следующих приборов:

— осевого сдвига;

— относительных расширений роторов;

— давления пара в регулирующей ступени ЧСД и ЦВД;

— давления в камере теплофикационного и производственного отборов;

— расход пара на турбину в регулируемые отборы и в конденсатор;

— давления и температуру масла на смазку;

-давления напорного масла в системе маслоснабжения регулирования;

-температуры баббита опорных подшипников турбины и колодок упорного подшипника;

-температуры холодного газа генератора;

-температуры масла на сливе с подшипников турбины и генератора;

-разрежения в конденсаторе;

-уровня в конденсаторе;

-уровней в корпусах ПВД, ПНД, ПСВ-90;

-ток электродвигателей конденсатных насосов;

-вибрации подшипников турбины и генератора;

-уровня в маслобаке.

В случае отклонения показаний приборов от номинальных величин, выявить причины и устранить их.

Один раз в смену и при каждом изменении нагрузки прослушивать турбину.

Один раз в смену производить контроль масла в грязном отсеке главного маслобака, который заключается в проверке его по внешнему виду на содержание воды, шлама и механических примесей.

При необходимости слить отстой, включить масляный фильтр.

Согласно графика производить расхаживание и смазку приводов арматуры.

Согласно графика производить добавление и замену смазки в подшипниках насосов.

Согласно графику производить переходы по насосам КН, СлН с проверкой их АВР.

Согласно графика производить проверку АВР маслонасосов смазки.

Согласно графика один раз в месяц производить:

— проверку плотности вакуумной системы;

— проверку принудительного закрытия КОС, после проверки закрытия КОС поочередно прочистить фильтры перед эл. магнитными клапанами подачи конденсата на КОС.

Проверку плотности АСК, РК ЦВД, РК ЧСД, поворотной диафрагмы производить:

— перед испытанием автомата безопасности повышением частоты вращения;

— до останова турбины в капремонт и при пуске после него;

Но не реже одного раза в год.

Проверку плотности КОС теплофикационного, производственного и проверку срабатывания предохранительных клапанов отборов производить не реже одного раза в год и перед испытаниями турбины на сброс нагрузки.

Проверку времени закрытия АСК, а также снятие характеристик системы регулирования на остановленной турбине и при ее работе на холостом ходу производить до и после капремонта узлов системы регулирования или парораспределения.

Вывод в ремонт турбины и вспомогательного оборудования производят машинист 6 разряда, машинист-обходчик и старший машинист под руководством начальника смены.

К ремонту и осмотру турбины и вспомогательного оборудования допускаются лица по наряду-допуску или распоряжению инженерно-технических работников, допущенных к самостоятельной работе и включенных в список лиц, имеющих право выдачи нарядов.

Испытания турбины, вспомогательных систем производить по Программам, утвержденным техническим директором ТЭЦ. В Программе указываются лица, ответственные за обеспечение и проведение испытаний.

Все работники должны соблюдать требования по безопасности труда взрыво- и пожаробезопасности.

Данное изображение создано с помощью ИИ – Midjourney 5.2

Асинхронный режим в энергосистеме

Фото генератора турбины ПТ

Асинхронный режим в работе генератора турбины ТЭЦ.

Асинхронный режим в энергосистеме может приводить к повреждению оборудования электростанций, массовому нарушению электроснабжения потребителей в связи с:

— возможностью расширения аварийной зоны, возникновением более двух несинхронно работающих частей ЭС (энергосистема) с дополнительным нарушением устойчивости и полной потерей контроля режима ЭС;

— перемещением электрического центра качания (ЭКЦ) по системе, сопровождающимся самоотключением групп энергопринимающих установок потребителей, оказавшихся вблизи ЭЦК, отключением ответственных  механизмов собственных нужд электростанций.

Согласно п. 5.1.27. ПТЭ ЭС (Приказ Минэнерго РФ от 19.06.2003 № 229) «Несинхронная работа отдельного возбужденного генератора любого типа относительно других генераторов электростанции не допускается». Поэтому  возникает необходимость установки защит от их повреждений в асинхронном режиме работы.

Для обеспечения устойчивости параллельной работы генераторов энергосистемы при отключении коротких замыканий и требованиям обеспечения устойчивости  нагрузки потребителей необходимо модернизировать существующие защиты  генераторов путем замены их на современные микропроцессорные защиты.  Также одним из возможных вариантов защиты, направленной на ликвидацию работы генератора в асинхронном режиме относительно остальных генераторов  энергосистемы, является автоматика ликвидации асинхронного режима работы (АЛАР). С целью повышения надёжности работы генераторов и снижения возможных  убытков, из-за их повреждения, необходимо установить на генераторах ТЭЦ противоаварийную автоматику, которая исключала бы работу генераторов в асинхронном режиме.

Таким образом, требуется произвести замену устаревших панелей электромеханических реле на микропроцессорные защиты и установить новые устройства АЛАР на турбинные генераторы.

Гидромеханическая очистка конденсатора

Очистка конденсатора напором воды

Указания по гидромеханической очистке трубного пучка конденсатора.

Для организации устойчивой циркуляции пористых резиновых шариков (ПРШ) системы шариковой очистки необходимо выполнить гидромеханическую очистку трубок конденсатора:

  • Внутренних поверхностей теплообменных трубок конденсационной установки;
  • Внутренних поверхностей входных выходных и поворотных камер конденсационной установки;
  • Трубопроводов циркуляционного водоснабжения в пределах циркуляции ПРШ (от фильтров предочистки до входных камер конденсатора, от сливных камер конденсатора до шарикоулавливающих устройств).

Объёмы гидромеханической очистке:

  1. Гидромеханическая очистка конденсатора:

1.1 Внутренняя поверхность теплообменных трубок конденсатора 50 КЦС-4 (трубка 23/25, количество трубок — 5300 шт. (6,6 м) – 3000 м2

1.2 Внутренняя поверхность входных выходных, поворотных камер, крышек и трубных досок конденсатора – 64,33 м2

  1. Гидромеханическая очистка подводящих (напорных) и сливных трубопроводов в зоне действия шариковой очистки:

2.1 Внутренняя поверхность трубопроводов Ду 800 от фильтров предочистки до входных камер конденсатора, от сливных камер конденсатора до шарикоулавливающих устройств – 80,2 м2