Деаэратор на ТЭЦ

Фото деаэратора

Деаэратор на ТЭЦ (тепловой электростанции) — это устройство, предназначенное для удаления кислорода и других газов (преимущественно углекислого газа) из питательной воды перед ее подачей в котел. Основная цель деаэратора — предотвратить коррозию внутренних поверхностей котла и турбины за счет уменьшения содержания кислорода в питательной воде.

Принцип работы деаэратора заключается в том, что подогретая питательная вода под давлением подается в верхнюю часть деаэратора, где она распыляется на множество мелких капель. Затем через специальные сопла воздух подается снизу деаэратора, который выдавливает кислород и другие газы из питательной воды. Эти газы затем выводятся из деаэратора через отдельный выпускной канал. После этого очищенная вода собирается в нижней части деаэратора и поступает в котел.

Конструкция деаэратора ТЭЦ может быть различной, но, как правило, она состоит из следующих элементов:

  1. Входной коллектор, через который поступает вода из системы охлаждения.
  2. Распределительная пластина или распределительный короб, который равномерно распределяет поток воды по всей поверхности деаэратора.
  3. Зона подогрева воды, где происходит нагрев воды до температуры насыщения паром.
  4. Отделение газов, где происходит отделение растворенных газов от воды. Для этого вода проходит через специальные заполнители, которые увеличивают поверхность контакта воды и пара.
  5. Выходной коллектор, через который уже очищенная от газов вода покидает деаэратор и направляется в паровой котел.
  6. Система подачи пара, которая нужна для поддержания температуры насыщения воды и обеспечения процесса отделения газов.
  7. АСУ деаэратора – система обратной связи, которая контролирует уровень воды в деаэраторе и поддерживает заданный режим работы устройства.

Деаэратор является важным компонентом процесса производства электроэнергии на ТЭЦ. Он помогает улучшить качество питательной воды и предотвращает возможные проблемы, связанные с коррозией и загрязнением оборудования.

Конденсатор турбины ТЭЦ

Конденсатор турбины фото

Конденсатор турбины ТЭЦ – это устройство, предназначенное для конденсации пара, выходящего из турбины после производства ею работы. Конденсация пара происходит путем охлаждения его водой, которая циркулирует внутри конденсатора. В результате конденсации пара, образуется жидкость (конденсат), которая снова может быть использована в качестве рабочего тела в турбине.

Конструкция конденсатора турбины ТЭЦ может различаться в зависимости от производителя и типа станции, однако, основными элементами конденсатора являются:

  1. Кожух – это оболочка, которая заключает в себе все остальные элементы конденсатора. Кожух изготавливается из стали или других материалов, которые способны обеспечить надежность и долговечность конструкции.
  2. Трубки – это трубы, которые пролегают внутри кожуха и служат для передачи воды, которая используется для охлаждения пара. Трубки могут быть изготовлены из меди, алюминия или других материалов, которые обеспечивают высокую теплоотдачу.
  3. Пластины – это пластины, которые расположены между трубками и служат для увеличения площади поверхности контакта между водой и паром. Пластины могут быть выполнены из алюминия, меди, нержавеющей стали или других материалов.
  4. Насосы – это устройства, которые двигают воду внутри конденсатора. Насосы могут быть различных типов – центробежные, винтовые и т.д.
  5. Конденсатный бак – это емкость, в которой собирается жидкость, образованная в результате конденсации пара. Конденсатный бак может иметь различный объем и форму.
  6. Другие элементы – к конструкции конденсатора также могут относиться различные фильтры, клапаны, система шарикоочистки, трубопроводы и другие элементы, которые обеспечивают бесперебойную работу системы.

Конденсаторы турбин ТЭЦ являются важной частью технологического процесса, поскольку они позволяют повысить эффективность работы станции и снизить затраты на производство электроэнергии.

Неисправности ПСГ

ПСГ турбины

Подогреватели сетевой воды ПСГ-1300-3-8-1 паровой турбины Т-50-130 эксплуатируются в тепловой схеме станции с 1967 г. Подогреватели предназначены для нагрева сетевой воды системы теплоснабжения города или других потребителей теплосети ТЭЦ.

Ниже, по тексту указаны неисправности бойлерно-теплофикационных установок ПСГ, без устранения которых, эксплуатация теплосети ТЭЦ невозможна и неэффективна. Неисправности ПСГ значительно снижают эффективность работы турбоагрегата, увеличивают затраты на топливо.

Подогреватели из-за износа водяных камер и трубной части требуют замены (большое количество отглушённых трубок, коррозия крышек подогревателей).

По результатам технического диагностирования подогревателей сетевой воды выявлен сильный неравномерный коррозионно-эрозионный износ основного металла корпуса и элементов подогревателей. Фактические скорости коррозионно-эрозионного износа и минимальные фактические толщины стенок элементов корпуса показывают, что подогреватели через некоторое время достигнут предельного состояния и не смогут быть допущены к дальнейшей эксплуатации без проведения дорогостоящего капитального ремонта. Ввиду этого возникает острая необходимость первоочередного перевооружения теплофикационной турбины новой бойлерной, иначе турбина будет работать исключительно в конденсационном режиме, что катастрофически отрицательно повлияет на экономичность работы турбины и станции в целом.

Укрупненная дорожная карта замены ПСГ ТА:

— демонтаж подогревателей ПСГ-1300-3-8 установленных на турбоагрегате;

— демонтаж участков трубопроводов подвода пара к подогревателям с линзовыми компенсаторами;

— монтаж новых подогревателей ПСГ-1300-3-8;

— монтаж участков трубопроводов подвода пара к подогревателям с линзовыми компенсаторами.

Безопасность бойлерных установок

Возведение новых БУ

Правила техники безопасности и пожарной безопасности при эксплуатации бойлерных установок ТЭЦ.

При обслуживании бойлерно-теплофикационных установок необходимо применять все правила, относящиеся к безопасному обслуживанию и ремонту теплофикационных аппаратов. Ремонт элементов бойлерно-теплофикационных установок во время работы не допускается.

Обслуживающий персонал обязан строго выполнять инструкции и своевременно проверять действия аппаратуры, контрольно-измерительных приборов и предохранительных устройств. Бойлер должен быть отключен в случаях:

1) при повышении давления в сосуде выше разрешенного, несмотря на соблюдение всех требований, указанных в инструкции;

2) неисправности предохранительных клапанов;

3) при обнаружении в основных элементах бойлера трещин, выпучин, значительного утонения стенок, течи в болтовых соединениях, разрыва прокладок;

4) при неисправности указателей уровня;

5) при неисправности защит и блокировок.

Ремонт аппаратов бойлерно-теплофикационных установок производится только по наряду.

Переключения в схеме бойлерно-теплофикационной установки производятся машинистом-обходчиком или дежурным слесарем под руководством старшего машиниста участка или начальника смены.

Прогрев и дренирование теплообменных аппаратов производится с применением всех мер правил безопасности, исключающих попадание горячей воды и пара на обслуживающий персонал.

Загоревшуюся изоляцию, пропитанную маслом, можно тушить пенным огнетушителем, песком или мокрым брезентом.

Загоревшуюся изоляцию электродвигателя разрешается тушить углекислотным огнетушителем, а после снятия напряжения с электродвигателя и водой.

Переносное освещение, применяемое при работе внутри теплообменного аппарата, должно иметь напряжение не более 12В.

Вывод в ремонт оборудования бойлерно-теплофикационной установки производится по заявке. Подготовка рабочего места производится согласно наряда. Подготовку рабочего места производит старший машинист или машинист-обходчик.

Подъём людей на кровлю аккумулирующего бака производится только по трапам и бригадой в составе не менее 2 человек с оформлением наряда-допуска или распоряжения.

Аварии на бойлерных установках ТЭЦ

БУ турбинного цеха

Аварии и нарушения в работе оборудования ТЭЦ, приводящие к останову бойлерных установок, как основных, так и пиковых.

  1. Нарушение режима работы параметров теплосети от графика, заданного диспетчером:

А). Вынужденное прекращение циркуляции воды в магистральных трубопроводах отопительной сети в отопительный период длительностью более 5 часов.

Б). Недоотпуск тепловой энергии потребителям в размере 100 Гкал и более.

В) Разрыв теплофикационного магистрального трубопровода диаметром 500 мм и более.

Г)  Недоотпуск тепловой энергии от 50 до 100 Гкал независимо от длительности энергоснабжения или прекращения циркуляции воды в магистральных трубопроводах теплосети в отопительный сезон длительностью от 2 до 5 часов считается отказом в работе 2 степени.

Д). Прекращение циркуляции воды в магистральных трубопроводах теплосети в отопительный сезон длительностью от 30 минут до 2 часов считается отказом в работе 1 степени.

  1. Снижение давления на всасе сетевых насосов.
  2. Переполнение бойлера конденсатом.
  3. Гидроудары в пиковом бойлере.
  4. Гидроудары на всасе сетевых насосов.
  5. Разрыв магистрального трубопровода сетевой воды.
  6. Аварийный останов теплосети.
  7. Вынужденный останов тепловой сети.
  8. Разрыв теплофикационных трубопроводов с затоплением минусовой отметки машинного зала.

Для снижения аварийности на технологическом оборудовании и в частности на бойлерных установках, необходимо четко соблюдать все правила эксплуатации, обслуживания и ремонта теплообменного оборудования.

Схема теплосети ТЭЦ

Трубные эстакады ТЭЦ

Схема теплосети ТЭЦ состоит из:

бойлерной установки турбины №1;

— бойлерной установки турбины № 2;

— бойлерной установки турбины № 3;

— бойлерной установки турбины №4;

— трубопроводов на эстакаде: ПС Ø800; ОС Ø800; ПС Ø900; ОС Ø900; ПС Ø1200; ОС Ø1200.

Схема тепловых сетей предусматривает возможность раздельного теплоснабжения населенного пункта и промышленной зоны, равно как и параллельного теплоснабжения.

При раздельном теплоснабжении бойлерные установки турбин № 3 и 4 работают в схеме тепловых сетей Ø1200мм города, а бойлерные установки №1, 2 и пиковая бойлерная установка в схеме тепловых сетей промышленной зоны (предприятия машиностроения и химического комплекса). Перемычка между напорными трубопроводами города и промзоны должна быть закрыта.

Подпитка теплосети осуществляется умягченной деаэрированной водой. Умягченная вода, поступающая с химводоочистки, поступает в деаэратор через регуляторы уровня. Греющая вода поступает на головки деаэратора подпитки теплосетей через регуляторы температуры. Деаэратор подпитки теплосети должен работать в базовом режиме.

Для обеспечения пиковых нагрузок подпитки теплосети на ТЭЦ установлено 2 аккумуляторных бака емкостью 5000 мЗ каждый. Подача воды на подпитку теплосети из аккумуляторных баков осуществляется тремя насосами аккумуляторных баков через регулятор давления в обратную линию теплосети Ø1200 мм города.

Для обеспечения расхода воды из аккумуляторных баков предусмотрена перемычка с регулятором РД между напором насосов и линией на заполнение аккумуляторных баков, при этом задвижка перед регулятором аккумуляторных баков должна быть закрыта.

Заполнение аккумуляторных баков осуществляется сетевой водой в период спада нагрузок через регулятор давления РД.

В аварийных случаях подпитка теплосети осуществляется:

— водопроводной водой с коллектора водопроводной воды;

— сырой водой с напорной линии через конденсатор и через эжекторы;

— технической водой с напорной через конденсатор и через эжекторы.

Насос сетевой СЭ

Насос сетевой СЭ 1250/2500

Насос сетевой СЭ 1250/2500. Общее описание и описание защит.

Насос СЭ относится к оборудованию бойлерной установки ТЭЦ.

Насос центробежный, горизонтальный, спирального типа, одноступенчатый с рабочим колесом двухстороннего входа.

Ротор насоса разгружен от осевых усилий за счет применения на насосе двухстороннего входа.

Опорами насоса являются подшипники скольжения. Возможные осевые усилия воспринимаются радиально-упорным подшипником, расположенным на торцевой стороне.

Смазка подшипников насоса кольцевая. В корпусах подшипников установлены холодильники для водяного охлаждения подшипников.

Концевые уплотнения ротора сальникового типа. Подводимая охлаждающая вода к сальнику разделяется на 2 потока. Один поток омывает снаружи камеру сальника и поступает в сливной трубопровод. Другой поток поступает к набивке.

Муфта сцепления насоса с электродвигателем зубчатая.

Для смазки и охлаждения подшипников насоса и электродвигателя предназначена маслостанция. Маслостанция состоит из: маслобака, двух рабочих маслонасосов смазки, двух фильтров, маслоохладителя. Масло в маслобаки заливается турбинное, уровень масла контролируется визуально по водоуказательному стеклу. Температура масла, подаваемого на подшипники электродвигателя и насоса должна быть 40-45°С и регулируется вентилями по охлаждающей воде на входе в маслоохладитель.

Для охлаждения обмоток электродвигателя на охладитель электродвигателя подается охлаждающая вода. При температуре корпуса статора электродвигателя 75°С, насос должен быть остановлен.

Давление масла в конце масляной линии не должно быть ниже 0,7 кгс/см2.

При температуре масла на сливе с подшипников электродвигателя 75°С, насос должен быть аварийно остановлен.

При температуре корпуса подшипника насоса 75°С насос должен быть остановлен.

При работе насоса давление на всасе должно быть не ниже 2,8 кгс/см2.

Перед вводом насоса в резерв должна быть опробована защита по понижению давления в системе смазки в испытательном положении.

Основной производитель насосов СЭ в Российской Федерации — АО «ГМС Ливгидромаш».