Автоматизация системы шариковой очистки

SCADA шарикоочистки

Техническое обеспечение автоматической системы управления системой шариковой очистки (далее — СШО). Техническое обеспечение совместно со специальным программным обеспечением составляет основу системы управления. Техническое обеспечение выполнено с применением контроллеров производства фирмы Siemens.

Основные функции системы управления СШО

— непрерывный контроль чистоты фильтра по перепаду давления на нем;

— автоматическое включение отмывки фильтра при достижении заданного перепада;

— автоматическая промывка фильтра 1 раз в 24 часа при не превышении установленного значения перепада давления на фильтре;

— при заклинивании ротора фильтра, в случае попадания крупных загрязнений, включается вращение ротора в противоположную сторону;

— после устранения причины заклинивания ротора фильтра, переключается вращение ротора фильтра в первоначальном направлении;

— при невозможности устранить причину заклинивания ротора фильтра автоматически, отключается электропривод фильтра, включается сигнал аварии;

— при невозможности отмыть фильтр автоматически и достижении перепада давления на нем выше аварийной установки, включается сигнал аварии;

— включение шариковой очисткой конденсатора выполняется в соответствии заданной периодичностью;

— управление электрическими исполнительными механизмами;

— при неисправности оборудования системы управления включается световая сигнализация.

Для управления системой шариковой очистки предусматривается установка локального шкафа АСУ СШО. Шкаф выполнен на базе устройств ввода-вывода Simatic ET200 (No 22734-11 в государственном реестре средств измерений) производства фирмы Siemens AG (Германия). На двери шкафа установлены ключи управления и арматура сигнализации положения исполнительных механизмов, кнопка аварийного останова. Для редактирования уставок, просмотра аварийных сообщений, индикации технологических параметров и состояния запорной арматуры и механизмов системы проектом предусматривается установка автоматизированного рабочего места оператора СШО на БЩУ-2. Предусматривается передача информации в общеблочный ПТК.

Система шариковой очистки конденсатора

Шарики для конденсатора турбины

Система шариковой очистки (СШО) трубного пучка конденсатора турбины.

Технология поддержания в чистоте конденсаторных трубок с помощью эластичных шариков из губчатой резины — СШО нашла широкое применение в современной энергетике.

Применение мягкого шарика, диаметр которого на 1-2  мм больше внутреннего  диаметра трубки, позволяет удалять с ее поверхности все виды вновь образующихся и недостаточно закрепленных отложений, поддерживая, таким  образом, исходную чистоту трубки в течение всего периода эксплуатации турбоагрегата.

Технологически система шарикоочистки разделяется на две автономные подсистемы:

  • подсистема «ФИЛЬТР» — технологическая схема очистки циркуляционной воды;
  • подсистема «ШАРИКОВАЯ ОЧИСТКА» — технологическая схема циркуляции шариков.

Подсистема «ФИЛЬТР» предназначена для предварительной очистки охлаждающей воды от различного мусора (щепа, гравий, элементы оросителей, полиэтиленовые бутылки и т. д.), который, засоряя трубные доски, препятствует  прохождению шариков через конденсаторные трубки.

Основным элементом подсистемы «ФИЛЬТР» являются фильтры предварительной очистки, устанавливаемые на подводящих к конденсатору  циркуляционных трубопроводах.

Подсистема «ШАРИКОВАЯ ОЧИСТКА» предназначена для транспортировки шариков через конденсаторные трубки.

Принцип работы СШО основан на предотвращении образования отложений на внутренних поверхностях конденсаторных трубок за счет циркуляции через них пористых резиновых шариков (ПРШ), диаметр которых на 1-2 мм больше внутреннего диаметра конденсаторных трубок.

Шарики загружаются в загрузочную камеру (ЗК), предназначенную для загрузки  и  ввода шариков в контур циркуляции.

После включения насоса шариковой очистки НШО шарики по трубопроводам транспортировки направляются в напорный водовод перед конденсатором.

Состав и технические характеристики применяемого оборудования СШО:

  1. Фильтр самоотмывающийся поворотный ФСП-1,0/0,8.
  2. Фильтр грязевый.
  3. Шарикоулавливающее устройство ШУУ-0,8.
  4. Насос шариковой очистки НШО.
  5. Загрузочная камера ЗК-0,017.
  6. Тройник для шариков.
  7. Технологический люк Л-0,5.

Системы очистки конденсатора турбины

Трубки конденсатора турбины

Необходимость очистки трубного пучка конденсатора.

Экономичность работы паровой турбины в значительной степени определяется давлением отработавшего пара или вакуумом в конденсаторе, зависящим от режима работы и состояния конденсационной установки. Одной из основных причин ухудшения вакуума в конденсаторе является снижение коэффициента  теплопередачи трубного пучка конденсатора вследствие его загрязнения с  внутренней (водяной) стороны различным мусором, вносимым с охлаждающей  водой, а также органическими и накипными отложениями.

Опыт работы различных электростанций дает возможность спрогнозировать снижение теплопередачи в конденсаторе за счет загрязнения его поверхности теплообмена.

Ухудшение вакуума в результате загрязнения водяной стороны конденсатора происходит постепенно, по мере накопления отложений и мусора, не создавая  резкой аварийной ситуации, что является предпосылкой для отсутствия достаточного внимания к проблеме поддержания чистоты трубной системы конденсатора и приводит к длительной эксплуатации турбин с повышенным давлением отработавшего пара.

Виды систем очистки трубок конденсатора.

В зависимости от качества охлаждающей воды, характера и состава отложений, для поддержания работоспособности конденсаторов практикуются различные  способы периодических чисток: термическая и вакуумная сушки, кислотные промывки, промывка высоконапорной установкой и проч., которые дают кратковременный и недостаточный эффект.

Кроме того, процесс периодической очистки конденсаторных трубок является мероприятием трудоемким и требует дополнительных ресурсозатрат, как людских, так и финансовых.

Иные способы предотвращения образования отложений в трубной системе конденсаторов, такие как использование ультразвуковых генераторов, электромагнитная обработка охлаждающей воды и ее обработка дымовыми  газами котлов, практического эффекта, как правило, не дают.

Эффективным и универсальным средством обеспечения высокого уровня чистоты конденсаторов является система шариковой очистки (СШО).

Эжектор пароструйный

Шильдик эжектора типа ЭП-3-750

Пароструйный эжектор типа ЭП-3-750, сделанный в СССР на Ленинградском металлическом заводе.

Принцип действия пароструйного эжектора.

В пароструйном эжекторе высокоскоростной поток пара (рабочее тело) проходит через сопло и создает вакуум, всасывая в себя медленно движущийся второй поток (всасываемое тело) — это может быть газ, пар или жидкость. Затем эти два потока смешиваются и выходят из эжектора с более высоким давлением.

Эжекторы паровых турбин широко применяются в энергетической промышленности для преобразования энергии пара в механическую энергию, которая затем может быть использована для привода генераторов электроэнергии или других механизмов. Они обычно используются в больших электростанциях, где требуется высокая производительность и эффективность.

Скачать паспорт пароструйного эжектора типа ЭП-3-750 в формате pdf >>>

Охладитель пара уплотнений

Фото ПСВ-125-7-15

Охладитель пара концевых уплотнений турбины — это устройство, которое используется для снижения температуры пара после его прохождения через уплотнения. Это важно, поскольку избыточная температура может привести к повреждению или износу уплотнений, что может привести к утечкам или другим проблемам.

Охладитель пара уплотнений обычно состоит из теплообменника, через который проходит пар, и среды, которая используется для охлаждения пара. Пар проходит через теплообменник, где его тепло передается среде охлаждения. Это позволяет снизить температуру пара и предотвратить его перегревание, что может привести к повреждению уплотнения.

Охладители пара уплотнений широко применяются в различных отраслях промышленности, таких как нефтехимическая, энергетика, химическая промышленность и другие, где требуется надежное и эффективное уплотнение для предотвращения утечек и повреждений оборудования.

На ТЭЦ в качестве охладителей пара уплотнений турбинного агрегата используются подогреватели типа ПСВ (на фото сверху охладитель пара уплотнений турбины ПТ-65/75-130/13 – ПСВ-125-7-15).

Концевые уплотнения паровой турбины служат для уменьшения потерь пара и энергии через зазоры между поворотными и неподвижными частями турбины. Уплотнения полностью или частично блокируют эти зазоры, предотвращая утечку пара.

Они могут быть изготовлены из различных материалов, таких как металл или специализированные полимеры, и могут быть сконструированы по-разному в зависимости от специфического вида турбины и рабочих условий. Однако все они выполняют важную функцию, удерживая рабочее вещество внутри турбины и защищая ее детали от износа и повреждения.

Высокая эффективность этих уплотнений критически важна для эффективной работы турбины и обеспечения безопасности ее эксплуатации.

Паспорт подогревателя ПСВ

РУ на ПСВ

Паспорт подогревателя ПСВ-500-14-23.

Паспорт сосуда с расчетным давлением свыше 0,05 МПа.

Общие сведения о сосуде:

  1. Техническая характеристика и параметры.
  2. Сведения об основных частях сосуда.
  3. Данные о штуцерах, фланцах, крышках и крепежных изделиях.
  4. Данные о предохранительных устройствах, основной арматуре, контрольно-измерительных приборах, приборах безопасности.
  5. Данные об основных материалах, применяемых при изготовлении сосуда.
  6. Карта измерений корпуса сосуда.
  7. Данные о сварке и неразрушающем контроле сварных соединений.
  8. Результаты испытаний и исследований контрольных сварных соединений.
  9. Данные о других испытаниях и исследованиях.
  10. Данные о термообработке.
  11. Данные о гидравлическом (пневматическом) испытании.
  12. Сведения о местонахождении сосуда.
  13. Ответственные за исправное состояние и безопасное действие сосуда.
  14. Сведения об установленной арматуре.
  15. Другие данные об установке сосуда.
  16. Сведения о замене и ремонте основных элементов сосуда и арматуры.
  17. Запись результатов освидетельствования.
  18. Регистрация сосуда.

Обязательные приложения:

  1. Спецификация к сборочному чертежу.
  2. Сборочный чертеж.
  3. Схема контроля сварных швов.
  4. Руководство по монтажу и эксплуатации (включая регламент проведения в зимнее время пуска (остановки) сосуда).

Скачать паспорт подогревателя ПСВ-500-14-23 в формате pdf >>>

Реконструкция паропроводов

Эстакада паропроводов

Некоторые рекомендации по реконструкции паропроводов.

Источниками пара на ТЭЦ являются паровые турбины, а также редукционно-охладительные установки, подключенные к паропроводам. Отпуск пара осуществляется с 4-х обще-станционных коллекторов Ду-500 мм — нитки «А», «Б», «В» и «Г». В связи с износом трубопроводов, эстакад трубопроводов, тепловой изоляции труб, необходима реконструкция паропроводов.

Выполняемые объемы работ по реконструкция паропроводов:

— разработка проектно-сметной документации (проектная и рабочая);

— экспертиза промышленной безопасности проектной документации;

— строительно-монтажные и пуско-наладочные работы.

— сдача трубопроводов в эксплуатацию.

Основные технические решения и требования для проектирования реконструкция паропроводов:

— границы проектирования и точки подключения к технологическим линиям;

— необходимые обследования строительных конструкций существующих эстакад, используемых при размещении паропроводов;

— замена участков существующего паропровода;

— замена арматуры;

— замена существующего коммерческого узла учета пара;

— приведение помещения теплового пункта к требованиям СНиП 41-02-2003 «Тепловые сети», п.47 Постановления Правительства РФ от 18 ноября 2013 г. N 1034 «О коммерческом учете тепловой энергии, теплоносителя», Свод правил по проектированию и строительству СП 41-101-95 «Проектирование тепловых пунктов»;

— замена тепловой изоляции существующего паропровода.

Проектом определить допустимые тепловые потери исходя из действующей нормативно-технической документации.

Проектом предусмотреть теплоизоляцию паропроводов необходимой толщины из негорючих материалов (каменной или базальтовой ваты). Покрывной слой – оцинкованный лист толщиной не менее 0,7 мм.

Выполнить расчеты трубопроводов на устойчивость (продольный изгиб) и прочность, расчет гидравлических режимов работы паропроводов. Диаметр, толщину стенок паропроводов, тип и количество опорно-подвесных систем должны быть рассчитаны проектной организацией согласно нагрузкам потребителей, планируемой общей протяжённости паропроводов и т.п.