Электромагнитная совместимость на ТЭЦ

Фото символа напряжения

Электромагнитная совместимость играет ключевую роль в обеспечении надежной и безопасной работы ТЭЦ. Она подразумевает способность оборудования и систем работать без негативного влияния друг на друга через электромагнитные поля и излучения. Неправильная настройка или отсутствие внимания к ЭМС может привести к сбоям в работе оборудования, ложным срабатываниям систем безопасности и даже к серьезным авариям.

Для обеспечения ЭМС на ТЭЦ проводятся различные мероприятия. Перечень мероприятий по обеспечению электромагнитной совместимости (ЭМС) на теплоэлектроцентралях (ТЭЦ) включает:

  1. Оценка электромагнитной обстановки (ЭМО):

Анализ компоновки объекта.

Измерение удельного электрического сопротивления грунта.

Оценка параметров системы заземления.

Определение уровня помех от внешних электромагнитных возмущений.

Анализ системы молниезащиты объекта с точки зрения ЭМС.

  1. Разработка рекомендаций по улучшению ЭМО:

Модернизация системы заземляющих устройств.

Прокладка трасс вторичных цепей в соответствии с требованиями ЭМС.

Комплекс мероприятий по защите от напряжения прикосновения при коротком замыкании.

Использование экранирующих шкафов для защиты микропроцессорной аппаратуры от магнитных полей.

Модернизация схем питания микропроцессорной аппаратуры постоянным и переменным током.

  1. Организация итогового контроля:

Полномасштабная диагностика ЭМО после завершения строительства или реконструкции объекта.

Эти мероприятия направлены на обеспечение стабильной и безотказной работы энергетического оборудования, подверженного воздействию электромагнитных помех.

Важно отметить, что соблюдение стандартов ЭМС является обязательным требованием для всех современных энергетических объектов, включая ТЭЦ. Это помогает предотвратить возможные проблемы с оборудованием и обеспечить его надежную работу в течение всего срока службы.

Текст – YandexGPT 3 Pro

Организация стройплощадки

Фото крана на подстанции

Описание мероприятий по организации стройплощадки при реконструкции подстанции 110/6 кВ:

Монтаж изделий, материалов и оборудования производить с помощью подъёмных механизмов. Погрузо-разгрузочные работы производить мостовым краном.

Для строповки использовать только испытанные стропы и траверсы, имеющие бирки с указанием грузоподъемности и даты испытания.

Доставленное на объект оборудование хранится на площадке заказчика внутри цеха.

Строительно-монтажные работы производить с существующих площадок обслуживания.

Подачу строительных материалов и изделий к рабочему месту производить с применением мостового крана и вручную.

Монтируемое оборудование, изделия, конструкции и стройматериалы на строительную площадку доставлять специализированным автомобильным транспортом.

Для противопожарных нужд использовать существующий пожарный трубопровод  и щит с песком, расположенный рядом с местом производства работ. Заказчик предварительно должен ознакомить подрядчика с расположением ближайших к месту работ пожарных кранов.

Для ограничения доступа посторонних лиц на места производства работ закрепить существующее цепное защитное ограждение.

Обеспечение объекта на период строительства электроэнергией, водой и сжатым воздухом решается заказчиком.

На период строительства для подвоза строительных конструкций и материалов  предусмотрено использование постоянных дорог с твердым покрытием.

При работах учитывать специфику производства работ на действующем предприятии/оборудовании.

При производстве строительно-монтажных работ строго соблюдать указания  СП 49.13330.2010 «Общие требования безопасности труда в строительстве».

Эксплуатацию строительных машин и механизмов вести в соответствии с указаниями ГОСТ 12.3.033-84.

Ответственность за соблюдением правил техники безопасности возлагать на прорабов и мастеров в пределах порученных им участков.

Защита подстанции 110 кВ

Фото ОПН на ЛЭП

Перечень мероприятий по заземлению (занулению) и молниезащите подстанции 110/6 кВ:

Защита электрического оборудования по степени загрязнения изоляции определяется, согласно региональным картам степени загрязнения. Так, например, объект находится в районе с IV степенью естественной природной загрязненности атмосферы. В связи с этим в открытых распределительных устройствах 110 кВ подвесная и линейная арматура в соответствии с ПУЭ изд. 7 гл.1.9 принимается по 4-ой степени загрязненности атмосферы с длиной пути утечки не менее 3,1 см/кВ. Опорная изоляция оборудования принимается категории IV по ГОСТ 9920-89.

Защита подстанции от прямых ударов молнии выполняется в соответствии с ПУЭ.

Защита оборудования 6кВ от коммутационных перенапряжений должна предусматриваться при помощи установки ограничителей перенапряжений на рабочих секциях РУ.

Для заземления элементов ПС 110/6 кВ необходимо провести расчеты, например, с помощью программных средств ElectriCSStorm. Так, расчетом должно быть определено общее сопротивление растеканию заземляющего, в т.ч.: горизонтальных заземлителей; вертикальных заземлителей.

Заземление зданий выполняется заземляющей полосой. Полосы заземления прокладываются вдоль стен помещений с электромеханическим оборудованием на высоте 0,4м от пола с креплением через 0,6-1 м. ЗУ (заземляющее устройство) выполняется в виде замкнутого контура, соединенного, не менее чем в двух точка. Объекты, расположенные в здании, присоединяются гибким медным проводником к ЗУ зданий, оборудование наружной установки присоединяется кратчайшим путем металлической полосой к ЗУ подстанции. Ответвления от сети заземления, как правило, выполняются стальной полосой сечением 4х40 кв. мм

Заземление выполняется в соответствии с гл. 1.7 ПУЭ и СП 76.13330.2016 «СНиП 3.05.06-85 Электротехнические устройства».

Технология монтажа силового кабеля

Фото кабельного барабана

Технология монтажа (прокладки) силового кабеля по металлическим лоткам, внутри помещения.

Перед выполнением работ по прокладке кабелей выполнить организационные и технические мероприятия.

Барабан с кабелем установить на домкраты.

Рекомендации по прокладке кабеля по кабельным лоткам:

— при прокладке избегать повреждения кабеля по несущей конструкции;

— при прокладки кабеля через перегородки и перекрытия предусмотреть закладные детали из обрезков металлических труб;

— с обоих концов кабеля предусмотреть монтажный запас не менее 3 % общей длины кабельной линии;

— при необходимости временно закрепить кабель в лотке,

— произвести маркировку кабельной линии на углах поворотов, а также при  проходе кабеля в перегородках и перекрытиях;

— промаркировать концы кабельных  линий;

— после окончания монтажа кабельной линии закладные детали заделать цементным раствором, а пустоты гильз заделать огнеупорной пеной.

Ареометр денсиметр

Схема ТТ от АББ

Подключение денсиметра

Денсиметр — это прибор, предназначенный для измерения плотности вещества (масса вещества, которая содержится в единице объема). В отличие от ареометра, который имеет две шкалы (температуры и плотности), денсиметр оснащен только шкалой для определения плотности. Для корректного использования денсиметра необходимо предварительно измерить температуру жидкости, так как результаты замеров плотности напрямую зависят от температуры. Важно, чтобы разница между начальной и конечной температурой не превышала 0,2 градуса Цельсия. Полученные значения температуры используются для нахождения соответствующего значения плотности в таблице, которая обычно прилагается к прибору.

На фото сверху представлено подключение денсиметра для измерения плотности элегаза в высоковольтном трансформаторе тока TG-245 ABB.

ЗИП для элегазового выключателя

Фото элегазового выключателя 110 кВ

Перечень минимального ЗИП (запасные части, инструменты и принадлежности) для элегазового высоковольтного выключателя, как импортного, так и отечественного производства:

— манометрический датчик плотности элегаза (циферблатный денсиметр) – 1шт.;

— разрывная мембрана в сборе – 1 шт.;

— вспомогательные блок–контакты для привода – 1 блок;

— катушка включения – 2 шт;

— катушка отключения – 2 шт;

— электропривод завода пружин – 1шт.;

— элегаз или смесь в количестве, достаточном для полной заправки выключателя;

— комплект запасных частей для агрегатного шкафа управления (клеммная колодка, нагревательные элементы и пр.) – 1 к-т.

Элегаз (шестифтористая сера, SF6) – это инертный газ, открытый французским химиком Анри Муассаном в 1900 году. Он бесцветен, не имеет вкуса и запаха, не вступает в реакцию с водородом и кислородом, а также обладает высокой электрической прочностью. Благодаря этим свойствам, элегаз широко используется в электротехнике как изоляционный материал, особенно в высоковольтных коммутационных аппаратах и комплектных распределительных устройствах.

Текст – YandexGPT 3 Pro

Антикоррозийная защита ОРУ-110 кВ

Фото ЛЭП на ОРУ 110 кВ

Указания по антикоррозийной защите стальных конструкций ОРУ-110 кВ ТЭЦ:

Стальные конструкции должны быть оцинкованы методом горячего цинкования по ГОСТ 9.307-89. Толщина цинкового покрытия должна составлять не менее 80 мкм.

Открытые поверхности закладных изделий, существующих и проектируемых фундаментов, монтажные сварные швы, места с поврежденным заводским цинкованием должны быть оцинкованы методом холодной оцинковки.

Холодное цинкование выполнить антикоррозийной композицией ЦИНОЛ (ТУ 2313-012-12288779-99) производства ЗАО НПП «Высокодисперсные металлические порошки» (или оно же — АО Научно-производственный холдинг «ВМП»). Покрытие наносить в два слоя общей толщиной 80-100 мкм. В качестве покрывного лакокрасочного материала следует наносить один слой толщиной 40 мкм антикоррозийной композиции на основе алюминиевой пудры «Алпол» (ТУ 2313-014-12288779-99) того же производителя. Общая толщина антикоррозийного покрытия, выполненного методом холодной оцинковки — 120-140 мкм. Работы по выполнению холодной оцинковки стальных конструкций должны выполняться согласно технологической инструкции ТИ 12288779.25073.00045.

Таким же способом выполняется антикоррозийное покрытие для всех других металлических конструкций ОРУ-110 кВ.

Каждая партия оцинкованных стальных элементов, а также крепёжных изделий должна поставляться с сертификатом качества.

Строительные и монтажные работы должны выполняться в соответствии со строительными нормами и правилами, сводами правил, национальными стандартами, ППР и типовыми технологическими картами.

Работы в условиях отрицательных температур следует выполнять в соответствии с требованиями СП 45.13330.2012 «Земляные сооружения, основания и фундаменты. Актуализированная редакция СНиП 3.02.01-87» и СП 70.13332012 «Несущие и ограждающие конструкции. Актуализированная редакция СНиП 3.0301-87».